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Approaches

• GAN and VAE are mostly used nowadays for generating 
complicated objects 
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Generative Adversarial Network (GAN)

• Implicit p(x|y), sampling only
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https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
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Classic GAN

• Discriminator approaches Jensen–Shannon divergence
• vanishing gradients for poor generator

• mode collapse
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Illustration: Jonathan Hui
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Wasserstein GAN

• Uses “earth mover’s distance”:

• Kantorovich-Rubinstein duality:

• “Discriminator” function f(x) may be approached using deep 
network
• output is not probability, but any scalar number

• need to satisfy  1-Lipschitz condition
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Illustration: Jonathan Hui
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CramerGAN
• WGAN produces biased gradients, that makes converging 

slower, sometimes never reaching optimum

• CramerGAN uses energy distance  as a critic (discriminator):

•  where X, X’, Y, Y’ are statistically independent samples from two 
distributions

• corresponds to the Cramer distance in 1D case:

• generator loss is therefore more complicated:

• critic is trained to maximize the energy distance

• CramerGAN demonstrates better convergency indeed
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4.1 Definition and Analysis

Recall that for two distributions P and Q over R, their (cumulative) distribution functions are re-
spectively F

P

and F
Q

. The Cramér distance between P and Q is
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P
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(x))
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Note that as written, the Cramér distance is not a metric proper. However, its square root is, and is a
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family of metrics

l
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The l
p

and Wasserstein metrics are identical at p = 1, but are otherwise distinct. Like the Wasser-
stein metrics, the l

p

metrics have dual forms as integral probability metrics (see Dedecker and Mer-
levède, 2007, for a proof):
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 1} and q is the conjugate exponent of p, i.e.
p�1

+ q�1
= 1.3 It is this dual form that we use to prove that the Cramér distance has property (S).

Theorem 2. Consider two random variables X , Y , a random variable A independent of X, Y , and
a real value c > 0. Then for 1  p  1,
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and of all the lp
p

distances, only the Cramér (p = 2) has this property.

We conclude that the Cramér distance enjoys both the benefits of the Wasserstein metric and the
SGD-friendliness of the KL divergence. Given the close similarity of the Wasserstein and l

p

metrics,
it is truly remarkable that only the Cramér distance has unbiased sample gradients.

The energy distance (Székely, 2002) is a natural extension of the Cramér distance to the multivariate
case. Let P, Q be probability distributions over Rd and let X, X 0 and Y, Y 0 be independent random
variables distributed according to P and Q, respectively. The energy distance (sometimes called the
squared energy distance, see e.g. Rizzo and Székely, 2016) is

E(P, Q) := E(X,Y ) := 2E kX � Y k2 � E kX � X 0k2 � E kY � Y 0k2 . (4)

Székely showed that, in the univariate case, l22(P, Q) =

1
2E(P, Q). Interestingly enough, the energy

distance can also be written in terms of a difference of expectations. For
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we find that
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Note that this f⇤ is not the maximizer of the dual (3), since 1
2E is equal to the squared l2 metric (i.e.

the Cramér distance).4 Finally, we remark that E also possesses properties (I), (S), and (U) (proof in
the appendix).

3This relationship is the reason for the notation F1 in the definition the dual of the 1-Wasserstein (2).
4The maximizer of (3) is: g⇤(x) = f
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(based on results by Gretton et al., 2012).
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Variational Autoencoder

• Autoencoder can be trained to sample realistic objects
• x → encoder → z → decoder → x’
• require x’ ∼ x

• Decoder part of the AE can generate realistic objects
• … providing correct prior distribution in the latent space p(z)
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x z x’
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Variational Autoencoder

• Decoder part of the AE can generate realistic objects
• … providing correct prior distribution in the latent space p(z)

• Put extra requirement into the loss
• latent distribution p(z|X) must approach some standard one,            

e.g. 𝓝(0,I)
• make z(x) variational
• (make x’(z) variational)
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Variational Autoencoder

• VAE allows calculating p(x|y)
• NB: GAN only allows sampling from p(x|y)

• … but smaller number of dimensions in the latent space
• blurry objects
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Library Approach
• We have train sample for the generative model anyway
• consistency with this train sample is a figure of merit for the 

generative model

• Objects of the train sample may be used for generation directly
• similar to KNN classification algorithm

• k=1: search for the object with appropriate conditions in the 
(presumably huge) data library 

• k>1: need to interpolate between objects

• short distance objects interpolation, more robust than global 
generation 

• NB: library approach by construction uses full information 
which is contained in the training sample
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Generative Models at LHC
• About 80% of computing resources are used for MC 

simulation in HEP experiments
• Calorimeter simulation is one of bottlenecks

• RICH is the next in the row for LHCb detector

• > 85% of simulation is taken                                                                         
by these 

• Can not expect exponential                                                             
rise of CPU performance

• Need a work around for Run3                                                            
and HL-LHC

• Generative models trained on                                                          
the detailed GEANT simulation may be a solution
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Example: ECAL Conditional Fast Simulation
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Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Discriminator

256x4x4

128x8x8

64x16x16

32x32x32

Regressor (pretrained)

256x4x4

128x8x8

64x16x16

32x32x32

real

fake

30x30

30x30

score

input

1x1

5x1

Upsampling 2x + Conv + BN + ReLU

Conv s2 + LeakyReLU (gray = fixed)

CxHxW output tensor size (w/o batch size)

CxHxWCxHxW

noise
Nx1

Training scheme

FC + reshape

concat
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LHCb ECAL Simulation
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GEANT Simulated

GAN Generated

GEANT Simulated

GAN Generated

log10(cell energy)

log10(cell energy)
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Primary and Marginal Distributions

• Is hard to fit marginal distributions
• unless the model is aware that those are important for us
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Scientific Requirements

• For image generation we are usually happy if the result 
looks like it is desired

• In science we need the result to reasonably well match the 
given set of requirements. Requirements are driven by 
scientific considerations closely connected to the ultimate 
scientific goal
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Enforcing Important Statistics

• No generative model is ideal
• some deviations from the original distribution remain

• Models tend to learn primary statistics of generated objects

• In physics applications, we often need for our model to 
learn particular statistics which are marginal for the 
generated object 
• e.g. cluster shape fluctuations for fast calorimeter simulation

• Can enforce these statistics by explicit adding them to the 
loss
• can’t we?
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Enforcing Important Statistics

• Can enforce statistics by explicit adding them to the loss
• can’t we?

• By adding necessary statistics to the loss we do enforce 
match for these statistics
• most likely by the price of overtraining these particular statistics
• … and we lose handle to validate quality of generator on this 

statistics

• Still can remove those statistics from loss, and see how far 
they would deviate 

• figure of merit for generating this statistics
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Generating Tails

• If the model is trained on the limited sample, how reliable 
are predictions beyond the training domain?
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Asymptotic Properties
• Toy model
• two variables 

distributed 
LogNormal

• training sample 1K 
events (x<12)

• target sample 1M 
events x1+x2

• use 1K samples with 
permutations

• Systematics due to 
marginal cut off
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Asymptotic Properties
• Toy model
• two variables 

distributed 
LogNormal

• training sample 1K 
events

• target sample 1M 
events x1+x2

• use 1K samples with 
permutations

• Systematics due to 
fluctuation in tails
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Statistics Properties
• Toy model
• two variables 

distributed 
LogNormal

• training sample 1K 
events

• use 1K samples with 
permutations

• variation for x1+x2

• Systematics due to 
the sample intrinsic 
corellation
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Statistics Properties

• Toy model
• two variables 

distributed 
LogNormal

• training sample 1K 
events

• fit LogNormal to 1K 
samples

• variation for x1+x2

• Systematics from the 
model systematics
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Decomposition

• Quality of the generative models is limited by the size of the 
train data sample
• generative models may not give profit for producing statistically 

correct big data sets

• no information beyond the train sample is available

• model systematics corresponds to the train sample statistics
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Decomposition

• No information beyond the train sample is available

• Not quite if we can decompose generative model into separate 
components
• random combinations of different components may drastically increase 

variability
 25
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Decomposition
• Quality of the generative models is limited by the size of the 

train data sample
• generative models may not give profit for producing statistically 

correct big data sets
• no information beyond the train sample is available

• Not quite if we can decompose generative model into 
separate components
• random combinations of different components may drastically 

increase variativity
• E.g. fast simulation of the calorimeter response
• generator is trained on 106 incident particles
• ∼50 particles in the calorimeter per event
• total variability  ∼(106)50 = 10300 !  (NB intrinsic correlation)
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Quality Metric
• No generative model is ideal
• some deviations from the original distribution remain

• Minor deviations are not that important e.g. for image 
generation

• Minor deviations may be a big deal for generative models 
in physics
• e.g. we could want E2-p2=m2 for generated particles to be 

precise

• Ultimate generative model quality metric is a comparing the 
final physics result obtained using generative model with 
the one obtained using the test data
• accuracy is limited by the size of the test data 
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Conclusions

• Surrogate generative models demonstrate extraordinary 
progress in current years

• There are many applications for use in natural science 
research

• Generative models need attention to ensure scientifically 
solid results 
• satisfying boundary conditions, control of scientifically important 

but marginal statistics

• appropriate evaluating the quality of the model

• propagating model intrinsic systematics to the systematic 
uncertainties of the final scientific result 
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Generative Model. ML Perspective
• Generative models look very different from regression/classification 

models
• actually they are not that different

• Consider set of objects each of which is described by a vector of 
parameters
• we arbitrary split this vector into “features” x and “labels” y

• For classification/regression problem we search for deterministic 
function f which approximates dependency y from x: y=f(x)
• in probabilistic approach we search for probability p(y|x)

• For generation problem we want to sample objects for a given label
• we search for probability p(x|y)
• y for generative model is called “condition”
• condition may be absent - unconditional generative model
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Generative Model. ML Perspective
• In both discriminative model and generative model we want to get 

probability for subset of object parameters conditioned by another 
subset of object parameters

• Discriminative models:

• evaluate distributions for few, usually redundant, parameters 
conditioned by many features

• can discriminate basing on this parameters

• Generative models:

• evaluate many features conditioned by few parameters (conditions)

• can sample these features

• NB: logistic regression + binomial distribution = generative model 

• for the binary objects   
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