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> For the example of a classification BDT for ttH(H->bb) vs ttbar+b-jets we
will present different methods of ranking the relative importance of
training features.

> Test subtractive method: start with all variables and remove the least
important

> The classification problem and event selection are inspired by the
ATLAS ttH(H->bb) 1712.08895 paper.

> Using open-data MC with Delphes simulation



https://arxiv.org/abs/1712.08895

> Feature ranking can help reduce unnecessary dimensionality

> Quicker run time and optimisation

> Improve insight into physical importance of the few selected variables
> Focus efforts of validating the modelling of inputs (time consuming)

> Help understand model response to different MC generators

> Not an issue for BDTs, but arbitrarily large number of inputs can compromise
other learning algorithms.

> How to select the best N variables to use in the training?

> Question of which training features are most important in the classification
has no unique answer, particularly when they are highly correlated.
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Example of additive ranking

> ATLAS Top and W tagger CERN-EP-2018-192

> Sequentially add variable that gives
largest increase in performance

> The set variables that reaches
saturation in performance (within
stat. uncertainty) is selected

> Ranking complexity scales with

number of variables n as O(n3)
(assuming product of #trainings and
#variables/training)

> Not clear if additive method
correctly ranks correlated variables,
e.g two individually useless variable
that have separating power only
when used together
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Data sets and BDT setup

- tevi3pp_mg5_ttbar_jet_ MadGraph/HW6. 2M events
> Open data MC: tev13pp_mg5_ttbar_bjet_ MadGraph/P6 10M events

tev13pp_mg5_ttH MadGraph/HW6 13M events

from https://hepsim.jlab.org

The ttbar+jet and ttbar+bjet background samples are orthogonal,
weighted by their cross section.

> Delphes simulation with atlas-like geometry niips://cp3.irmp.ucl.ac be/projects/delphes/

> Event selection, type of variables chosen similar to single lepton channel of
ATLAS-CONF-2016-080 (some cuts loosened to gain stats)

> 1 lepton with pt> 20 GeV and =5 jets with pt>25 GeV

> 23 b-jets, with 70% WP, b-efficiency, light/c-rejection is parameterised
according to JHEP08(2018)089

> selects: 700k ttH signal and 275k tt+jets background events

> Train on 2/3, test on 1/3 of events

> TMVA implementation of BDT:
> 400 trees, MaxDepth=5, AdaBoostBeta=0.15, nCuts=80
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https://cp3.irmp.ucl.ac.be/projects/delphes/
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Training variables

> Choice of variables inspired by reference paper, but also added
additional ones and left those out that could not easily be reproduced

> 39 variables are computed, from which 26 are considered which have at
least 1% separation in signal vs background shapes
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Training variables
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Training variables
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Training variables

Input variable: Mjjj_MaxPt
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Ranking Methods tested

> lterative addition: start with n=1, take best training of all n options. Then take best
option of adding one more from remaining n-1 variables, etc. Ranking complexity
scales as O(n3).

> lterative removal: start with training on all variables and remove iteratively remove the
one that degrades the performance the least, scales as O(n3).

> Hypothesis: better consideration of variables that only add to performance in
combination with others.

> Correlation based: rank the variables based on their correlation to the BDT score
computed with all variables. Computationally cheap, scales as O(n).

> BDT selection frequency ‘TMVA ranking’: train once on all variables, rank by how
often a variables provided the optimal decision in the BDT, scales as O(n).

> Separation based: rank by overlap of signal vs background shapes. Only method that
establishes ranking without performing any training.

> Random choice: serves as reference, use a random subset of the variables. Repeat
and average over 1000 trials.

Here performance is measured as integral of the ROC curve.
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Ranking results

ROC Integral vs No. of Variables
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Ranking results

ROC Integral vs No. of Variables
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Ranking results

ROC Integral vs No. of Variables
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Ranking results

Relative Performance (AUROC)
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Ranking results

Relative Performance (AUROC)
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Ranking results

Relative Performance (AUROC)
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Variable ranking

> Top 10 variables selected by most promising methods

> Should only serve as indication, would not make physics conclusions on the basis of the
sample and simulation used

> Difference in performance at most ~1% on AUROC
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Conclusions

> The example of the ttH(H->bb) vs tt+jets BDT classification was shown
to demonstrate the difference of selected feature ranking methods.

> |dentifying the top 5 or 10 most important variables is not straightforward
in this case, given the high correlation among the variables.

> The computationally cheap BDT selection frequency ranking was found
to be an adequate rough estimate

> The computationally costly (greedy) iterative addition and removal
methods were compared, where the removal method yields the highest
performance for any subset of variables.

> We recommend the iterative removal method for analogous cases
where you want to prune the list training variables.

https://qgithub.com/sitongan/vSearch
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