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Introduction

Motivations:
# In the next years experiments at the LHC need to cope to a

substantial increase of data.
# At the same time, the strategy to produce accurate and statistically

large samples of simulated pp collisions will be facing both
technological limitations and new opportunities.

New approach:
# In this context Machine Learning techniques are considered.
# A Generative Adversial Network (GAN) is used to simulate the

production of particle pairs in pp collisions at LHC.
# This approach is applied to dijet events production:

� In the SM precision measurements and searches for physics beyond the
SM is one of most common background source.

Paper draft on arXiv and submitted to JHEP: arXiv 1903.02433
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Monte Carlo Simulation @ the LHC

# Both the ATLAS and CMS experiments at the LHC rely on:
� Event generators such as MadGraph5, Powheg-Box and

aMC@NLO to simulate the hard scattering process.
� Pythia8 and Herwig7 to simulate the parton shower process.
� Geant4 to simulate the detector response.

Limitations:
# Several minutes to simulate a single event:

� Huge computational footprint with O(109) events, both in terms of
CPU usage and disk space.

Current solution:
# Experiments rely on simpler but less accurate generators.

Providing a solution to extend the simulated events to the require-
ments of the LHC experiments will significantly enhance a wide range
of measurements.
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Physics of QCD dijet events

# At the LHC, pp collisions result in interaction of quarks and gluons
referred to as partons.

# Parton scattering processes via strong
interaction result in most of the cases in two
outgoing partons producing parton showers
that hadronize into cluster called jets.

# Parton scattering processes with a pair of jets
in the final state are called dijet events.
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Monte Carlo training sample

Events generation:
# A sample of 2 milion dijet events has been used.

� Generated using MadGraph5 and Pythia8 samples.

Detector response:
# Delphes3 Fast Simulation with setting that reproduce the ATLAS

detector geometry.
# An average of 25 additional soft QCD pp collisions were overlaid to

reproduce more realistic data-taking conditions.
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Object definition and selection

Object Reconstruction:
# Objects (e−, µ, Emiss

T , jets) are reconstructed using Delphes3
algorithm before and after the detector simulations:

� Particle and reconstruction levels, respectively.
# Jets were reconstructed using the anti-kT algorithm as implemented n

FastJet with a distance parameter R=1.0.

Selection:
# Applied a cut on the scalar sum of pT of the outgoing partons (HT >

500 GeV) to increase the number of events with pT > 250 GeV.
# ∼ 1.5 million of events passed this selection at particle level and

about 800,000 at reco level.
# These events were used to train the network.
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Generative Adversial Networks (GANs)

GANs are generative models that try to learn the model to generate the input
distribution as realistically as possible.

# A GAN is an unsupervised learning technique and consists of two
neural networks:

� A generative model Generator (G) generates new data points from
some random uniform distribution.

� A discriminative model Discriminator (D) identifies fake data
produced by Generator from the real data.
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Network architecture (1/2)

# The overall architecture of the network is composed of two main
blocks: a Generator (G) and a Discriminator (D), based on
convolutional layers.

# All layers have LeakyReLU activation functions except the last layer of
both G and D.

� The last layer of G has a tanh activation function.
� The last layer of D has a sigmoid activation function.

# The network is implemented and trained using Keras v2.2.4
with Tensorflow v1.12 back-end .

� Input features are scaled in the range [-1,1] and pre-processed using

SCIKIT-LEARN and Pandas libraries.
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Network architecture (2/2)
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Training process

# The Generator takes as input random noise:
� It transforms a vector of 128 random numbers from a uniform

distribution in the [0,1] range, into a vector of 7 elements that
represent:

pT , η and m of the leading jet
pT , η φ and m of the 2nd-leading jet.

# The Discriminator is trained with MC events.
# Achieved significant improvement by using the intrinsic φ symmetry

of dijet events → φ of the leading jet set to 0.
# All events were used twice by switching η sign (η-flip).

� For the event generation η randomly flipped to remove any not physical
effects.

# 100K iterations with mini-batches of 32 events each.
# 1 hour to complete the training on a GPU NVIDIA Quadro P6000.
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Network parameters optimization

# Several parameters of the model have been optimised.
# Once satisfactory performances have been reached, no further

parameter optimisation was carried on.
Loss Function settings:
# Generator → Mean squared error.
# Discriminator → Binary cross-entropy.

Optimizer setting:
# for both Discriminator and Generator the optimizer is Adam with

learning rate lr = 10−5, β1 = 0.5 and β2 = 0.9
These parameters gave the best results among many values and
configuration tested.
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Loss functions

# Reco Level

# Particle Level

# The stationary state between generator and discriminator (Nash
equilibrium) is reached after few thousands epochs.

# This is true for both particle and reco levels.
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Discriminator accuracy

# Reco Level

# Particle Level
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Event Generation

# Weights of generator model are saved during the training every 5000
epochs and used to generate events.

� ∼ 80 s to generate 1 million events.
� Events are filtered by applying the same cut that are applied to the real

dataset:
both jets with pT > 250 GeV.

# These events are used to fill the histograms.
# The comparison between the GAN output and the MC production is

done for the following kinematic variables:
� Leading large R-jet pT , η, m
� Sub Leading large R-jet pT , η, m
� Dijet system pT , η, m
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Results

Reco Level Particle Level

# Comparison of leading jets and dijet system kinematis as they appear at the
iteration that yields the best agreement in terms of overall χ2.

# Satisfactory level of agreement over a large range of kinematic regime.
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Further investigations (1/2)

# Performed further investigations in regions of the phase spaces with low
cross-section → kinematic region of particularly interest for searches of physics
BSM.

# Fit the MC with this 4p analytic function: f(x) = p0(1−x)p1

x(p2+p3logx) , x = mjj/
√

s
# Trained GAN with ∼ 40K events with mjj > 1.5 TeV. Then used the trained model

to generate 10 million events (sample » of MC).

# The fit in the region between 3 and 10 TeV can
predict the shape of the MC distribution with a
χ2/NDF = 1.04.

# The sample generated with the GAN shows an
agreement of χ2/NDF= 1.29.
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Further investigations (2/2)

# Trained GAN on a sample of top quark
pairs decaying in the all hadronic channel
(tt̄ → WbW b̄ → bqq̄′b̄qq̄′)

# Both jets at particle level are required to
have pT > 350 GeV and m < 500 GeV.

# In this phase space region the jet mass is
expected to have a peak around the top
mass (172.5 GeV) in the MC simulation.

# When b-quarks are produced at an angle
where only W bosons are found, a second
peak is expected around W boson mass
(∼ 80 GeV).

# The figure shows that the GAN can learn these physics processes.
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Conclusions

# A Generative Adversial Network approach for the simulation of QCD
dijet events at the LHC has been presented.

# This novel approach is an attractive solution to reduce CPU usage
and disk space to generate and simulate events.

# Very promising approach that will allow to improve the quality of MC
production at the LHC.

# Results show that the GAN can reproduced simulated events with
very high accuracy.
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Backup

GANs functions (1/2)

Generator
z → Noise vector
G(z) → Generator’s output for xfake

Discriminator
x → training sample
D(x) → Generator’s output for xreal
D(G(z)) → Discriminator’s output
for xfake

Generator G Discriminator D
D(G(z)) → should be maximized D(x) → should be maximized

D(G(z)) → should be minimized

Loss functions
Gloss = log(1-D(G(z)) or
-log(D(G(z))

Dlossreal = log(D(x))
Dlossfake = log(1-D(G(z))
Dloss = Dlossreal + Dlossfake =
log(D(x)) + log(1-D(G(z))
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Backup

GANs functions (2/2)

# Discriminator and Generator play a two player min-max game.

min
G

max
D

L(G ,D) = Ex∼pdata(x) [log D(x)] + Ez∼pz (z) [log (1− D(G(z))]

= Ex∼pdata(x) [log D(x)] + Ex∼pfake (x) [log (1− D(x))]

# x ∼ pdata probability density function of trainig sample generated
using MC method.

# z ∼ pfake probability density function of input noise.
# The Nash equilibrium (min-max game) is reached when D is unable to

distinguish fake examples from real data.
� Hence the generator has been trained to be a good approximator of the

data pdf, i.e. pfake ∼ pdata.
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Backup

Training GANs process

Training steps:
# The main idea is to train 2 different networks to compete with each

other with two different objectives:
1 The Generator G tries to fool the discriminator D into believing that

the input sent by G is real.
2 The Discriminator D identifies that the input is fake
3 Then, the Generator G learns to produce similar type of training data

inputs.
4 This process, called Adversial Training, is repeated for a while or until

Nash equilibrium is found.
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