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Introduction

Motivations:

% In the next years experiments at the LHC need to cope to a
substantial increase of data.

% At the same time, the strategy to produce accurate and statistically
large samples of simulated pp collisions will be facing both
technological limitations and new opportunities.

New approach:

% In this context Machine Learning techniques are considered.

% A Generative Adversial Network (GAN) is used to simulate the
production of particle pairs in pp collisions at LHC.

% This approach is applied to dijet events production:

¢ In the SM precision measurements and searches for physics beyond the
SM is one of most common background source.

Paper draft on arXiv and submitted to JHEP:
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I
Monte Carlo Simulation @ the LHC

% Both the ATLAS and CMS experiments at the LHC rely on:

¢ Event generators such as MADGRAPHS, POWHEG-BOX and
AMC@NLO to simulate the hard scattering process.
¢ PyTHIA8 and HERWIGY to simulate the parton shower process.
¢ GEANT4 to simulate the detector response.
Limitations:
% Several minutes to simulate a single event:

¢ Huge computational footprint with O(10°) events, both in terms of
CPU usage and disk space.
Current solution:

% Experiments rely on simpler but less accurate generators.

Providing a solution to extend the simulated events to the require-
ments of the LHC experiments will significantly enhance a wide range
of measurements.
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Physics of QCD dijet events

% At the LHC, pp collisions result in interaction of quarks and gluons
referred to as partons.

% Parton scattering processes via strong
interaction result in most of the cases in two
outgoing partons producing parton showers
that hadronize into cluster called jets.

% Parton scattering processes with a pair of jets
in the final state are called dijet events.
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Monte Carlo training sample

Events generation:
% A sample of 2 milion dijet events has been used.
¢ Generated using MADGRAPH5 and PYTHIAS samples.

Detector response:

% DELPHES3 Fast Simulation with setting that reproduce the ATLAS
detector geometry.

% An average of 25 additional soft QCD pp collisions were overlaid to
reproduce more realistic data-taking conditions.
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Object definition and selection

Object Reconstruction:

9 Objects (e, u, ET™S, jets) are reconstructed using DELPHES3
algorithm before and after the detector simulations:

¢ Particle and reconstruction levels, respectively.

% Jets were reconstructed using the anti-k7 algorithm as implemented n
FastJet with a distance parameter R=1.0.

Selection:

% Applied a cut on the scalar sum of pr of the outgoing partons (Ht >
500 GeV) to increase the number of events with pr > 250 GeV.

% ~ 1.5 million of events passed this selection at particle level and
about 800,000 at reco level.

% These events were used to train the network.
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Generative Adversial Networks (GANs)

GANs are generative models that try to learn the model to generate the input

distribution as realistically as possible.

% A GAN is an unsupervised learning technique and consists of two
neural networks:

¢ A generative model Generator (G) generates new data points from
some random uniform distribution.

¢ A discriminative model Discriminator (D) identifies fake data
produced by Generator from the real data.

Training set Dlscrlmlnator
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Network architecture (1/2)

% The overall architecture of the network is composed of two main
blocks: a Generator (G) and a Discriminator (D), based on
convolutional layers.

% All layers have LeakyRelLU activation functions except the last layer of
both G and D.

¢ The last layer of G has a tanh activation function.
¢ The last layer of D has a sigmoid activation function.

% The network is implemented and trained using KERAS v2.2.4 [ Keras
with TENSORFLOW v1.12 back-end ...
¢ Input features are scaled in the range [-1,1] and pre-processed using
a

SCIKIT-LEARN @at and Panpas =¥ libraries.
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Network architecture (2/2)
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Training process

% The Generator takes as input random noise:

¢ It transforms a vector of 128 random numbers from a uniform
distribution in the [0,1] range, into a vector of 7 elements that
represent:

@ pr, n and m of the leading jet
@ pr, n ¢ and m of the 2nd-leading jet.

% The Discriminator is trained with MC events.

% Achieved significant improvement by using the intrinsic ¢ symmetry
of dijet events — ¢ of the leading jet set to 0.

% All events were used twice by switching 7 sign (n-flip).

¢ For the event generation 7 randomly flipped to remove any not physical
effects.

9 100K iterations with mini-batches of 32 events each.
% 1 hour to complete the training on a GPU NVIDIA Quadro P6000.
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Network parameters optimization

% Several parameters of the model have been optimised.

% Once satisfactory performances have been reached, no further
parameter optimisation was carried on.

Loss Function settings:
% Generator — Mean squared error.
% Discriminator — Binary cross-entropy.
Optimizer setting:
% for both Discriminator and Generator the optimizer is Adam with
learning rate Ir = 107%, 8; = 0.5 and 3> = 0.9

These parameters gave the best results among many values and
configuration tested.
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Loss functions
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% The stationary state between generator and discriminator (Nash
equilibrium) is reached after few thousands epochs.

% This is true for both particle and reco levels.
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Discriminator accuracy
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Event Generation

% Weights of generator model are saved during the training every 5000
epochs and used to generate events.
¢ ~ 80 s to generate 1 million events.
¢ Events are filtered by applying the same cut that are applied to the real
dataset:

o both jets with pr > 250 GeV.

% These events are used to fill the histograms.
% The comparison between the GAN output and the MC production is
done for the following kinematic variables:
¢ Leading large R-jet pr, n, m
¢ Sub Leading large R-jet p1, n, m
¢ Dijet system pr, 7, m
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Results

Reco Level
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G Comparison of leading jets and dijet system kinematis as they appear at the

iteration that yields the best agreement in terms of overall x2.

9~ Satisfactory level of agreement over a large range of kinematic regime.
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I
Further investigations (1/2)

% Performed further investigations in regions of the phase spaces with low
cross-section — kinematic region of particularly interest for searches of physics
BSM.

9 Fit the MC with this 4p analytic function: f(x) = 2U=X% " — ./ /5

(p2+p3logx) 1
%> Trained GAN with ~ 40K events with mj; > 1.5 TeV. Then used the trained model
to generate 10 million events (sample » of MC).

10° [TIMGS + Py
— 4p fit: g%/dof = 45.6/44 = 1.04
[ GAN: 2/dof = 87.6/68 = 1.29

9= The fit in the region between 3 and 10 TeV can
predict the shape of the MC distribution with a
x°/NDF = 1.04.

Events / Bin Width

9> The sample generated with the GAN shows an
agreement of x?/NDF= 1.29.
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Dijet system m [TeV]
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Further investigations (2/2)

Trained GAN on a sample of top quark
pairs decaying in the all hadronic channel
(tt = WbWb — bqq'bqq’)

Both jets at particle level are required to
have pr > 350 GeV and m < 500 GeV.

In this phase space region the jet mass is
expected to have a peak around the top
mass (172.5 GeV) in the MC simulation.
When b-quarks are produced at an angle
where only W bosons are found, a second
peak is expected around W boson mass
(~ 80 GeV).

% The figure shows that the GAN can learn these physics processes.
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Conclusions

% A Generative Adversial Network approach for the simulation of QCD
dijet events at the LHC has been presented.

% This novel approach is an attractive solution to reduce CPU usage
and disk space to generate and simulate events.

% Very promising approach that will allow to improve the quality of MC
production at the LHC.

% Results show that the GAN can reproduced simulated events with
very high accuracy.
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GANs functions (1/2)

Generator Discriminator

z — Noise vector X — training sample

G(z) — Generator's output for xmke D(x) — Generator's output for Xea
D(G(z)) — Discriminator’s output
for Xfake

] Generator G \ Discriminator D

D(G(z)) — should be maximized | D(x) — should be maximized
D(G(z)) — should be minimized

Loss functions

Gloss = log(1-D(G(z)) or Dioss,.,, = log(D(x))

“log(D(G(z)) Diossie = 10g(1-D(G(2))
Dloss = Dloss,ea/ + DIOSSfake =
10g(D(x)) -+ Iog(1-D(G(2))
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GANss functions (2/2)

Tt
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Discriminator and Generator play a two player min-max game.

m(::n max L(G,D) = Eiup,.x) llog D(x)] +E,wp, ) [log (1 — D(G(2))]

= Expiax) [108 D(X)] + Exppyie (x) [log (1 = D(x))]

X ~ Pdata Probability density function of trainig sample generated
using MC method.

Z ~ Prake probability density function of input noise.

The Nash equilibrium (min-max game) is reached when D is unable to
distinguish fake examples from real data.
¢ Hence the generator has been trained to be a good approximator of the
data pdf! i.e. Pfake ~ Pdata-




Training GANs process

Training steps:

% The main idea is to train 2 different networks to compete with each
other with two different objectives:

1 The Generator G tries to fool the discriminator D into believing that
the input sent by G is real.

2 The Discriminator D identifies that the input is fake

3 Then, the Generator G learns to produce similar type of training data
inputs.

4 This process, called Adversial Training, is repeated for a while or until
Nash equilibrium is found.
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