DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC

Riccardo Di Sipio, Michele Faucci Giannelli, Sana Ketabchi Haghighat, <u>Serena Palazzo</u>

3rd Machine Learning Workshop

April 15-18, 2019

Introduction

Motivations:

- G→ In the next years experiments at the LHC need to cope to a substantial increase of data.
- ↔ At the same time, the strategy to produce accurate and statistically large samples of simulated *pp* collisions will be facing both technological limitations and new opportunities.

New approach:

- ^{9→} In this context **Machine Learning** techniques are considered.
- \hookrightarrow A Generative Adversial Network (GAN) is used to simulate the production of particle pairs in *pp* collisions at LHC.
- \hookrightarrow This approach is applied to dijet events production:
 - In the SM precision measurements and searches for physics beyond the SM is one of most common background source.

Paper draft on arXiv and submitted to JHEP: • arXiv 1903.02433

Monte Carlo Simulation @ the LHC

 \hookrightarrow Both the ATLAS and CMS experiments at the LHC rely on:

- Event generators such as MADGRAPH5, POWHEG-BOX and AMC@NLO to simulate the hard scattering process.
- PYTHIA8 and HERWIG7 to simulate the parton shower process.
- GEANT4 to simulate the detector response.

Limitations:

- \hookrightarrow Several minutes to simulate a single event:
 - Huge computational footprint with O(10⁹) events, both in terms of CPU usage and disk space.

Current solution:

 \hookrightarrow Experiments rely on simpler but less accurate generators.

Providing a solution to extend the simulated events to the requirements of the LHC experiments will significantly enhance a wide range of measurements.

- ↔ At the LHC, pp collisions result in interaction of quarks and gluons referred to as partons.
- ↔ Parton scattering processes via strong interaction result in most of the cases in two outgoing partons producing parton showers that hadronize into cluster called jets.
- ↔ Parton scattering processes with a pair of jets in the final state are called **dijet** events.

Events generation:

- \hookrightarrow A sample of 2 milion dijet events has been used.
 - Generated using MADGRAPH5 and PYTHIA8 samples.

Detector response:

- ⊕ DELPHES3 Fast Simulation with setting that reproduce the ATLAS detector geometry.
- \hookrightarrow An average of 25 additional soft QCD *pp* collisions were overlaid to reproduce more realistic data-taking conditions.

Object Reconstruction:

- \hookrightarrow Objects (e^- , μ , E_T^{miss} , jets) are reconstructed using DELPHES3 algorithm before and after the detector simulations:
 - Particle and reconstruction levels, respectively.
- \hookrightarrow Jets were reconstructed using the anti- k_T algorithm as implemented n FastJet with a distance parameter R=1.0.

Selection:

- ↔ Applied a cut on the scalar sum of p_T of the outgoing partons (H_T > 500 GeV) to increase the number of events with p_T > 250 GeV.
- $\hookrightarrow \sim$ 1.5 million of events passed this selection at particle level and about 800,000 at reco level.
- \hookrightarrow These events were used to train the network.

GANs are generative models that try to learn the model to generate the input distribution as realistically as possible.

- A GAN is an unsupervised learning technique and consists of two neural networks:
 - A generative model **Generator** (G) generates new data points from some random uniform distribution.
 - A discriminative model **Discriminator** (D) identifies fake data produced by Generator from the real data.

- ↔ The overall architecture of the network is composed of two main blocks: a Generator (G) and a Discriminator (D), based on convolutional layers.
- \hookrightarrow All layers have LeakyReLU activation functions except the last layer of both G and D.
 - The last layer of G has a *tanh* activation function.
 - The last layer of D has a *sigmoid* activation function.
- ↔ The network is implemented and trained using KERAS v2.2.4 Keras with TENSORFLOW v1.12 back-end ^{*}.
 - Input features are scaled in the range [-1,1] and pre-processed using SCIKIT-LEARN libraries.

Network architecture (2/2)

- \hookrightarrow The **Generator** takes as input random noise:
 - It transforms a vector of 128 random numbers from a uniform distribution in the [0,1] range, into a vector of 7 elements that represent:
 - *p*_T, η and *m* of the leading jet
 - p_T , $\eta \phi$ and m of the 2nd-leading jet.
- \hookrightarrow The **Discriminator** is trained with MC events.
- \hookrightarrow Achieved significant improvement by using the intrinsic ϕ symmetry of dijet events $\rightarrow \phi$ of the leading jet set to 0.
- \hookrightarrow All events were used twice by switching η sign (η -flip).
 - For the event generation η randomly flipped to remove any not physical effects.
- \rightarrow 100K iterations with mini-batches of 32 events each.
- \hookrightarrow 1 hour to complete the training on a GPU NVIDIA Quadro P6000.

- G→ Once satisfactory performances have been reached, no further parameter optimisation was carried on.

Loss Function settings:

- \hookrightarrow Generator \rightarrow Mean squared error.
- \hookrightarrow Discriminator \rightarrow Binary cross-entropy.

Optimizer setting:

 \hookrightarrow for both Discriminator and Generator the optimizer is *Adam* with learning rate Ir = 10⁻⁵, $\beta_1 = 0.5$ and $\beta_2 = 0.9$

These parameters gave the best results among many values and configuration tested.

Loss functions

- ↔ The stationary state between generator and discriminator (Nash equilibrium) is reached after few thousands epochs.
- \rightarrow This is true for both particle and reco levels.

Discriminator accuracy

- ↔ Weights of generator model are saved during the training every 5000 epochs and used to generate events.
 - $\bullet~\sim$ 80 s to generate 1 million events.
 - Events are filtered by applying the same cut that are applied to the real dataset:
 - both jets with $p_T > 250$ GeV.
- \hookrightarrow These events are used to fill the histograms.
- ↔ The comparison between the GAN output and the MC production is done for the following kinematic variables:
 - Leading large R-jet p_T , η , m
 - Sub Leading large R-jet p_T , η , m
 - Dijet system p_T , η , m

Results

- \hookrightarrow Comparison of leading jets and dijet system kinematis as they appear at the iteration that yields the best agreement in terms of overall χ^2 .
- \hookrightarrow Satisfactory level of agreement over a large range of kinematic regime.

- \hookrightarrow Performed further investigations in regions of the phase spaces with low cross-section \rightarrow kinematic region of particularly interest for searches of physics BSM.
- \hookrightarrow Fit the MC with this 4p analytic function: $f(x) = \frac{p_0(1-x)^{p_1}}{x^{(p^2+p_3)ogx}}$, $x = m_{jj}/\sqrt{s}$
- \hookrightarrow Trained GAN with ~ 40K events with $m_{jj} > 1.5$ TeV. Then used the trained model to generate 10 million events (sample » of MC).

- \hookrightarrow The fit in the region between 3 and 10 TeV can predict the shape of the MC distribution with a $\chi^2/\text{NDF} = 1.04$.
- \hookrightarrow The sample generated with the GAN shows an agreement of $\chi^2/\text{NDF}=$ 1.29.

Further investigations (2/2)

- Trained GAN on a sample of top quark pairs decaying in the all hadronic channel $(t\bar{t} \rightarrow WbW\bar{b} \rightarrow bq\bar{q'}\bar{b}q\bar{q'})$
- Both jets at particle level are required to have $p_T > 350$ GeV and m < 500 GeV.
- In this phase space region the jet mass is expected to have a peak around the top mass (172.5 GeV) in the MC simulation.
- When *b*-quarks are produced at an angle where only *W* bosons are found, a second peak is expected around *W* boson mass (\sim 80 GeV).

 \hookrightarrow The figure shows that the GAN can learn these physics processes.

- A Generative Adversial Network approach for the simulation of QCD dijet events at the LHC has been presented.
- ↔ This novel approach is an attractive solution to reduce CPU usage and disk space to generate and simulate events.
- ↔ Very promising approach that will allow to improve the quality of MC production at the LHC.
- \hookrightarrow Results show that the GAN can reproduced simulated events with very high accuracy.

BACKUP

Backup

GANs functions (1/2)

Generator

 $z \to \mathsf{Noise} \; \mathsf{vector}$

 $G(z) \rightarrow$ Generator's output for x_{fake}

Discriminator

 $\begin{array}{l} x \rightarrow \text{training sample} \\ D(x) \rightarrow \text{Generator's output for } x_{real} \\ D(G(z)) \rightarrow \text{Discriminator's output} \\ \text{for } x_{fake} \end{array}$

Generator G	Discriminator D
D(G(z)) o should be maximized	$D(x) \rightarrow$ should be maximized $D(G(z)) \rightarrow$ should be minimized

Loss functions

 $G_{loss} = log(1-D(G(z)) \text{ or } -log(D(G(z)))$

$$\begin{array}{l} D_{loss_{real}} = \log(\mathsf{D}(\mathsf{x})) \\ D_{loss_{fake}} = \log(1\text{-}\mathsf{D}(\mathsf{G}(\mathsf{z})) \\ D_{loss} = D_{loss_{real}} + D_{loss_{fake}} = \\ \log(\mathsf{D}(\mathsf{x})) + \log(1\text{-}\mathsf{D}(\mathsf{G}(\mathsf{z})) \end{array}$$

GANs functions (2/2)

 \hookrightarrow Discriminator and Generator play a two player min-max game.

$$\begin{split} \min_{G} \max_{D} L(G,D) &= \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_z(z)} \left[\log \left(1 - D(G(z)) \right] \right] \\ &= \mathbb{E}_{x \sim p_{data}(x)} \left[\log D(x) \right] + \mathbb{E}_{x \sim p_{fake}}(x) \left[\log \left(1 - D(x) \right) \right] \end{split}$$

- $\hookrightarrow x \sim p_{data}$ probability density function of trainig sample generated using MC method.
- $\rightarrow z \sim p_{fake}$ probability density function of input noise.
- ↔ The Nash equilibrium (min-max game) is reached when D is unable to distinguish fake examples from real data.
 - Hence the generator has been trained to be a good approximator of the data pdf, i.e. p_{fake} ~ p_{data}.

Training GANs process

Training steps:

- \hookrightarrow The main idea is to train 2 different networks to compete with each other with two different objectives:
 - 1 The Generator G tries to fool the discriminator D into believing that the input sent by G is real.
 - 2 The Discriminator *D* identifies that the input is fake
 - **3** Then, the Generator *G* learns to produce similar type of training data inputs.
 - 4 This process, called **Adversial Training**, is repeated for a while or until Nash equilibrium is found.