Invariance through Mutual Information Regularization

Justin Tan, Phillip Urquijo

University of Melbourne

$$
\text { April 16, } 2019
$$

Flavor Physics

Precision flavor physics

Compare precise experimental measurements of observables in B decays with theoretical predictions; interpret discrepancies in terms of new physics.

- Look for indirect effects of heavy unknown particles in low energy observables of B mesons.

Penguin processes:
Radiative: $b \rightarrow q \gamma$
Electroweak:

$$
b \rightarrow q \ell^{+} \ell^{-}, \quad q=s, d
$$

- FCNCs, forbidden at leading order \rightarrow rare + hard to observe!

Figure 1: Radiative $b \rightarrow s \gamma$ (top) and electroweak $b \rightarrow s \ell^{+} \ell^{-}$(bottom) penguins

Belle II

- Next generation B-physics experiment at SuperKEKB, an $e^{+} e^{-}$collider in Japan.
- Target: $50 \times 10^{9} e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$ events by 2024.
- Large statistics \rightarrow high precision measurements of penguin decay observables: $\mathcal{B}(b \rightarrow s \gamma), \mathcal{B}(b \rightarrow s \ell \ell), R_{X_{s}}$.

Figure 2: Sensitivity to lepton universality ratio $R_{X s}$ in different q^{2} regions

Figure 3: Sensitivity to $d \mathcal{B} / d q^{2}$ in $b \rightarrow s \ell \ell$ decays in different q^{2} regions

Signal Identification

- Identify signal peak in:
- $M_{b c}=\sqrt{E_{\text {beam }}^{2}-\left|\vec{p}_{B}\right|^{2}}$
- Extract physical observables by fitting signal + background model.
- Rely on interpolation of smooth background spectrum from sidebands beneath signal peak.

Learning algorithms preferentially select signal-like events \rightarrow background spectrum distortion \rightarrow uncontrollable systematic uncertainties. Necessary to avoid introduction of parameter-dependent bias in signal/background spectrum.
e.g. $b \rightarrow$ sll analyses report results in regions of the $q^{2}=M_{\ell \ell}^{2}$ spectrum \rightarrow important that $M_{b c}$ and q^{2} should remain unbiased

Setup

- Train supervised learning algorithm to distinguish true signal $b \rightarrow s \gamma$ events from background processes.
- Input data X consists of kinematic quantities and event topology variables, ~ 80 in total.
- Sensitive variable Z is the beam constrained mass $M_{b c}$.
- All variables with Pearson correlation with Z above 0.1 removed.
- Let parameters of the learning algorithm be θ (in this case, a neural network).
- Treat network as an encoder $X \rightarrow E$. After training, threshold output E to reject 99.5% of background events.

Sculpting

Classifier output $E_{\theta}(X) \sim \mathrm{p}$ (signal|data) (calibration issues aside). Reject given fraction of events by thresholding this output.

Figure 4: Continuum $M_{b c}$ before (green) and after (blue) @ 0.995 suppression.

Figure 5: Signal $M_{b c}$ before (green) and after (blue) @ 0.995 suppression.

Background artificially sculpted to resemble signal spectrum post-selection, a result of a non-uniform selection efficiency.

(Non-) Uniform Selection Efficiency

Figure 6: Non-uniform selection efficiency of background events in $M_{b c}$ spectrum.

Figure 7: Uniform selection efficiency of background events in $M_{b c}$ spectrum.

- Decay observables measured by conducting a likelihood fit to certain discriminating variables (here $M_{b c}$).
- Non-uniform selection efficiency in these variables may result in poorly understood systematic uncertainties and increased reliance on (potentially inaccurate) simulated data.

Mutual Information

- Symmetric information measure between random variables X and Y.

$$
\begin{aligned}
I(X, Y) & \triangleq \mathbf{E}_{X, Y}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =H(Y)-H(Y \mid X)
\end{aligned}
$$

- $I(X, Y) \geq 0$ with equality if X, Y independent.
- Entropy H is a measure of uncertainty in X :

$$
H(X)=-\mathbf{E}_{X}[\log p(x)]
$$

"Reduction in uncertainty in Y due to knowledge of X."

Mutual Information Penalty

- Treat neural network as an encoder encoding input data $X \rightarrow E$.
- Strip dependency of encoding from sensitive variables where uniform selection efficiency desirable (call it Z).
- Augment cross-entropy objective with mutual information between encoder output and variables where uniform selection efficiency is to be enforced.

$$
\mathcal{L}\left(\theta_{f} ; Z\right)=H_{p, q}+\lambda I(E, Z)
$$

- $H_{p, q}$: Generic classification loss
- I(E,Z): Mutual information between encoding E and Z
- Penalize large information content between encoding and Z, penalty strength determined by λ.
- Problem: mutual information intractable to compute in general*

Estimating Mutual Information

- Variational lower bound on the mutual information (Nowozin et. al., NIPS 2016):

$$
\begin{aligned}
I_{V}\left(E_{\theta_{f}}(X), Z\right) & =\mathbf{E}_{\mathbb{P}_{x Z}}\left[T_{\omega}\left(E_{\theta}(x), z\right)\right]-\log \mathbf{E}_{\mathbb{P}_{x} \otimes \mathbb{P}_{z}}\left[e^{T_{\omega}\left(E_{\theta}(x), z\right)}\right] \\
& \leq I\left(E_{\theta_{f}}(X), Z\right)
\end{aligned}
$$

- $T_{\omega}: \mathcal{X} \times \mathcal{Z} \rightarrow \mathbb{R}:$ differentiable transformation parameterized by ω, adjusted to maximize I_{V}.
- Parameterize mappings $E_{\theta_{f}}$ and T_{ω} by neural networks.

$$
\begin{aligned}
& \theta_{t+1} \leftarrow \theta_{t}-\eta^{\prime} \nabla_{\theta} \mathcal{L}\left(\theta_{t}, \omega_{t}\right) \\
& \omega_{t+1} \leftarrow \omega_{t}+\eta \nabla_{\omega} \mathcal{L}\left(\theta_{t}, \omega_{t}\right)
\end{aligned}
$$

Mutual Information Penalty

Objective: $\min _{E} \max _{T} \mathbf{E}_{\mathcal{D}}\left[-\log p_{\theta}(y \mid x)\right]+\lambda_{M I} I_{V}\left(E_{\theta_{f}}(X), Z\right)$

- The classifier/encoder $E_{\theta_{f}}$ enforces decorrelation by minimizing $I(E, Z)$ simultaneously with the cross entropy.
- T_{ω} tightens the lower bound by maximizing lower bound I_{V}.
- $\lambda_{M I}$ controls tradeoff between decorrelation and classification.

Mutual Information Penalty

Toy Example

- Data drawn from bivariate Gaussians:

$$
\mathbf{s}_{1} \sim \mathcal{N}\left(\binom{z}{0},\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right)\right), \quad \mathbf{s}_{2} \sim \mathcal{N}\left(\binom{0}{1.5},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)
$$

- Classify individual samples according to (x, y) coordinates, penalizing dependency on noisy x dimension.

Figure 8: Curvature of contours in decision surface indicates dependency on x.

Figure 9: Penalization of objective function straightens contours and reduces x dependency.

Algorithm 1 Encoder Training with Mutual Information-based Regularization

Require: Regularization coefficient $\lambda>0$, inner learning rate schedule η_{t}, outer learning rate schedule η_{t}^{\prime}
Initialize the parameters of the encoder network E_{θ} and statistic network f_{ϕ}.
for $t=1$ to T do for $k=1$ to K do

Sample $\left\{\left(x_{1}, z_{1}\right), \ldots,\left(x_{B}, z_{B}\right)\right\} \sim \mathbb{P}_{X Z}$ from the joint distribution.
Sample $\left\{\tilde{z}_{1}, \ldots, \tilde{z}_{B}\right\} \sim \mathbb{P}_{Z}$ from the marginal distribution.
Update f_{ϕ} by ascending the objective:

$$
\begin{aligned}
I_{V}(\theta, \phi) & =\frac{1}{B} \sum_{i=1}^{B}\left[\log \sigma\left(f_{\phi}\left(E_{\theta}\left(x_{i}\right), z_{i}\right)\right)-\log \left(1-\sigma\left(f_{\phi}\left(E_{\theta}\left(x_{i}\right), \tilde{z}_{i}\right)\right)\right)\right] \\
\phi & \leftarrow \phi+\eta_{t} \nabla_{\phi} I_{V}(\theta, \phi)
\end{aligned}
$$

end for
Sample $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{B}, y_{B}, z_{B}\right)\right\} \sim \mathbb{P}_{X Y Z}$ from the joint distribution. Sample $\left\{\tilde{z}_{1}, \ldots, \tilde{z}_{B}\right\} \sim \mathbb{P}_{Z}$ from the marginal distribution. Update E_{θ} by descending the objective:

$$
\begin{aligned}
\mathcal{L}(\theta, \phi) & =\frac{1}{B} \sum_{i=1}^{B}\left[-\log p_{\theta}\left(y_{i} \mid x_{i}\right)+\lambda I_{V}(\theta, \phi)\right] \\
\theta & \leftarrow \theta-\eta_{t}^{\prime} \mathcal{L}(\theta, \phi)
\end{aligned}
$$

end for

Experiments 2

- Signal classification in FCNC $b \rightarrow s \gamma$, want to enforce decorrelation with $Z=M_{b c} \equiv \sqrt{E_{\text {beam }}^{2}-\left|\vec{p}_{B}\right|^{2}}$.
- Classifier architecture: 5 layer densely connected network with 512 nodes per layer, SGD ($\eta^{\prime}=1 \mathrm{e}-4$) w/ Nesterov Momentum ($\gamma=0.9$).
- Auxillary architecture: 2 dense layers, [256, 128], Adam ($\eta=1 \mathrm{e}-5$)
- Need to use exponential moving average in practice:

$$
\vec{\phi}_{t+1} \leftarrow \vec{\phi}_{t}+\alpha\left(\vec{\phi}_{t+1}-\vec{\phi}_{t}\right), \alpha \in[0,1]
$$

- 7.6 M training events, 1.5 M test, 5 epochs.

Experiments 2 (Background only)

Experiments 2 (Background + Signal) © $\epsilon_{B}=0.99$

No Free Lunch

Receiver operating characteristic
$b \rightarrow s \gamma$, Decorrelation comparison

Figure 10: Decorrelation performance penalty. $b \rightarrow s \gamma$ events.

No Free Lunch

Figure 11: Decorrelation performance penalty. $b \rightarrow s \gamma$ events.

Mutual Information as f-Divergence

- f-Divergence: 'Distance' between two probability distributions.

$$
d_{K L}(\mu \| \nu)=\mathbf{E}_{x \sim \mu}\left[\log \frac{\mu(x)}{\nu(x)}\right]
$$

- Interpretation as KL divergence between joint and product of marginals.

$$
\begin{aligned}
I(X, Y) & \triangleq \mathbf{E}_{X, Y}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =d_{K L}(p(x, y) \| p(x) p(y))
\end{aligned}
$$

- Consider the symmetric, bounded form of $d_{K L}$:

$$
\begin{aligned}
d_{J S}(\mu \| \nu) & \triangleq \frac{1}{2}\left(d_{K L}(\mu \| m)+d_{K L}(\nu \| m)\right) \\
m & =\frac{1}{2}(\mu+\nu)
\end{aligned}
$$

Jensen-Shannon Divergence Proxy

- Mutual information minimization $\Leftrightarrow f$-divergence minimization.
- Enforce decorrelation \Leftrightarrow Minimize f-divergence between joint $\mathbb{P}_{X Z}$ and product of marginals $\mathbb{P}_{X} \otimes \mathbb{P}_{Z}$.
- Variational lower bound on $d_{J S}\left(\mathbb{P}_{X} \| \mathbb{P}_{Y}\right)$:

$$
\begin{aligned}
F(\omega) & =\mathbf{E}_{\mathbb{P}_{X}}\left[\log \sigma\left(T_{\omega}(x, y)\right)\right]-\mathbf{E}_{\mathbb{P}_{Y}}\left[\log \left(1-\sigma\left(T_{\omega}(x, y)\right)\right)\right] \\
& \leq d_{J S}\left(\mathbb{P}_{X} \| \mathbb{P}_{Y}\right)-\log 4
\end{aligned}
$$

- Numerically stable.

Mutual Information Penalty v2

- Minimize mutual information between $\mathbb{P}_{X Z}$ and $\mathbb{P}_{X} \otimes \mathbb{P}_{Z}$ through minimization of divergence $d_{J S}\left(\mathbb{P}_{X Z} \| \mathbb{P}_{X} \otimes \mathbb{P}_{Z}\right)$.

$$
\begin{aligned}
I_{V}^{(J S)}\left(E_{\theta}(X), Z\right)= & \mathbf{E}_{\mathbb{P}_{x z}}\left[\log \sigma\left(T_{\omega}\left(E_{\theta}(x), z\right)\right)\right]- \\
& \mathbf{E}_{\mathbb{P}_{x} \otimes \mathbb{P}_{z}}\left[\log \left(1-\sigma\left(T_{\omega}\left(E_{\theta}(x), z\right)\right)\right)\right]
\end{aligned}
$$

- Numerically stable objective is the sum of two cross-entropy terms. One promotes discrimination power while the other reduces classification dependence on Z.

Objective: $\min _{E} \max _{T} \mathbf{E}_{\mathcal{D}}\left[-\log p_{\theta}(y \mid x)\right]+\lambda_{M I} I_{V}^{(J S)}\left(E_{\theta}(X), Z\right)$

Comparisons

- Use $b \rightarrow s \gamma$ sample prepared using centralized Belle II simulation.
- Investigate effect on fit observables extracted through $M_{b c}$ pdf after 0.999 background rejection.
- Fix signal PDF shape parameters to original signal sample pre-selection.
- Float signal/background yields + background shape.
- Optimize for parameter error: $\left(N_{\text {sig }} / \delta N_{\text {sig }}\right)$
- $\delta N_{\text {sig }}$ is the error reported by the covariance matrix.
- Says nothing about goodness of fit.
- Metric can probably be improved.

$N_{S} / \delta N_{S}$

AUC: $0.957-N_{S} / \delta N_{S}: 33.317$

$N_{S} / \delta N_{S}$

AUC: $0.979-N_{S} / \delta N_{S}: 23.808$

Evaluation

- Isolate the effect of fundamental algorithm design from model hyperparameters.
- Run fair automated comparisons with similar techniques. (Fair = same computational budget).
- Select hyperparameters that give high reward $N_{S} / \delta N_{S}$.
- Test model sensitivity to hyperparameters by showing distribution of maximum reward achieved by each model (64 samples per model).

Summary

- Tension between optimal discrimination and systematic errors in searches for NP using ML techniques.
- Methods based on information penalties are an accessible way to prevent background sculpting without significant compromise on discrimination power.

> Balance background rejection with controlling systematic uncertainties to achieve better sensitivity to new physics.

justin.tan@coepp.org.au

Backup

Implementation

These gradient-based penalties rely on automatic differentiation frameworks.

- Data collection: ROOT
- To Python: uproot
- Preprocessing: Spark/Pandas
- Workflow scalable to $\mathcal{O}(100) \mathrm{GB}$ worth of training data.

TensorFlow

- TensorFlow:
- Open-source: No black boxes.
- Fine-grained control over entire architecture.

Motivation

- Non-SM contributions enter through hypothetical new TeV-scale particles running within the loop \rightarrow interference with known amplitudes.
- Strong constraints on NP by measurement of inclusive/exclusive BR, CP asymmetries.

Figure 12: Example of SM radiative penguin decay for $b \rightarrow \boldsymbol{s} \gamma$ [2]

Figure 13: Example of hypothetical SUSY contribution to radiative decay [2]

Mutual Information

- Glossary:
- $\mathcal{D}=(X, Y)$: True example distribution, $X \in \mathbb{R}^{D}, y \in[0,1] \sim p$
- $E=E_{\theta_{f}}(X) \in \mathbb{R}:$ Encoder ${ }^{1}$ output parameterized by $\theta_{f}, E \sim q$
- Z: Variables we would like to remain unbiased
- Want to reduce information content of Z stored in encoding $E_{\theta_{f}}(X)$.
- Bound $I\left(E_{\theta_{f}}(X), Z\right)$ with Lagrange multiplier $\lambda_{M I}$:

$$
\begin{equation*}
\mathcal{L}\left(\theta_{f} ; Z\right)=H_{p, q}+\lambda_{M I} I(E, Z) \tag{3}
\end{equation*}
$$

- Problem: $I(X, Y)$ between (non-Gaussian) continuous variables intractable.

Experiments 2

Mutual Information Growth

Figure 14: Mutual Information growth over training for different values of $\lambda_{M I}$

Algorithm 1 Encoder Training with Mutual Information-based Regularization

Require: Regularization coefficient $\lambda>0$, inner learning rate schedule η_{t}, outer learning rate schedule η_{t}^{\prime}
Initialize the parameters of the encoder network E_{θ} and statistic network f_{ϕ}.
for $t=1$ to T do for $k=1$ to K do

Sample $\left\{\left(x_{1}, z_{1}\right), \ldots,\left(x_{B}, z_{B}\right)\right\} \sim \mathbb{P}_{X Z}$ from the joint distribution.
Sample $\left\{\tilde{z}_{1}, \ldots, \tilde{z}_{B}\right\} \sim \mathbb{P}_{Z}$ from the marginal distribution.
Update f_{ϕ} by ascending the objective:

$$
\begin{aligned}
I_{V}(\theta, \phi) & =\frac{1}{B} \sum_{i=1}^{B}\left[\log \sigma\left(f_{\phi}\left(E_{\theta}\left(x_{i}\right), z_{i}\right)\right)-\log \left(1-\sigma\left(f_{\phi}\left(E_{\theta}\left(x_{i}\right), \tilde{z}_{i}\right)\right)\right)\right] \\
\phi & \leftarrow \phi+\eta_{t} \nabla_{\phi} I_{V}(\theta, \phi)
\end{aligned}
$$

end for
Sample $\left\{\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{B}, y_{B}, z_{B}\right)\right\} \sim \mathbb{P}_{X Y Z}$ from the joint distribution. Sample $\left\{\tilde{z}_{1}, \ldots, \tilde{z}_{B}\right\} \sim \mathbb{P}_{Z}$ from the marginal distribution. Update E_{θ} by descending the objective:

$$
\begin{aligned}
\mathcal{L}(\theta, \phi) & =\frac{1}{B} \sum_{i=1}^{B}\left[-\log p_{\theta}\left(y_{i} \mid x_{i}\right)+\lambda I_{V}(\theta, \phi)\right] \\
\theta & \leftarrow \theta-\eta_{t}^{\prime} \mathcal{L}(\theta, \phi)
\end{aligned}
$$

end for

Mutual Information as f-Divergence

- f-Divergence: 'Distance' between two probability distributions.

$$
d_{K L}(\mu \| \nu)=\mathbf{E}_{x \sim \mu}\left[\log \frac{\mu(x)}{\nu(x)}\right]
$$

- Interpretation as KL divergence between joint and product of marginals.

$$
\begin{aligned}
I(X, Y) & \triangleq \mathbf{E}_{X, Y}\left[\log \frac{p(x, y)}{p(x) p(y)}\right] \\
& =d_{K L}(p(x, y) \| p(x) p(y))
\end{aligned}
$$

- Consider the symmetric, bounded form of $d_{K L}$:

$$
\begin{aligned}
d_{J S}(\mu \| \nu) & \triangleq \frac{1}{2}\left(d_{K L}(\mu \| m)+d_{K L}(\nu \| m)\right) \\
m & =\frac{1}{2}(\mu+\nu)
\end{aligned}
$$

Jensen-Shannon Divergence Proxy

- Mutual information minimization $\Leftrightarrow f$-divergence minimization.
- Variational lower bound on $d_{J S}\left(\mathbb{P}_{X} \| \mathbb{P}_{Y}\right)$:

$$
\begin{aligned}
F(\omega) & =\mathbf{E}_{\mathbb{P}_{X}}\left[\log \sigma\left(T_{\omega}(x, y)\right)\right]-\mathbf{E}_{\mathbb{P}_{Y}}\left[\log \left(1-\sigma\left(T_{\omega}(x, y)\right)\right)\right] \\
& \leq d_{J S}\left(\mathbb{P}_{X} \| \mathbb{P}_{Y}\right)-\log 4
\end{aligned}
$$

- Numerically stable.
- Enforce decorrelation \Leftrightarrow Minimize f-divergence between joint $\mathbb{P}_{x z}$ and product of marginals $\mathbb{P}_{X} \otimes \mathbb{P}_{Z}$.

Mutual Information Penalty v2

- Minimize mutual information between $\mathbb{P}_{X Z}$ and $\mathbb{P}_{X} \otimes \mathbb{P}_{Z}$ through minimization of divergence $d_{J S}\left(\mathbb{P}_{X Z} \| \mathbb{P}_{X} \otimes \mathbb{P}_{Z}\right)$.

$$
\begin{aligned}
I_{V}^{(J S)}\left(E_{\theta}(X), Z\right)= & \mathbf{E}_{\mathbb{P}_{x z}}\left[\log \sigma\left(T_{\omega}\left(E_{\theta}(x), z\right)\right)\right]- \\
& \mathbf{E}_{\mathbb{P}_{x} \otimes \mathbb{P}_{z}}\left[\log \left(1-\sigma\left(T_{\omega}\left(E_{\theta}(x), z\right)\right)\right)\right]
\end{aligned}
$$

- Numerically stable objective is the sum of two cross-entropy terms. One promotes discrimination power while the other reduces classification dependence on Z.

Objective: $\min _{E} \max _{T} \mathbf{E}_{\mathcal{D}}\left[-\log p_{\theta}(y \mid x)\right]+\lambda_{M I} I_{V}^{(J S)}\left(E_{\theta}(X), Z\right)$

f-Divergences

- Measure disimilarity between two given probability distributions.

$$
d_{f}(\mu \| \nu) \triangleq \int_{\mathcal{X}} \nu(x) f\left(\frac{\mu(x)}{\nu(x)}\right)
$$

- Generator $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ convex with $f(1)=0$
- KL-Divergence: $f(v)=v \log v$
- Variational lower bound by applying Jensen's inequality to Fenchel dual-dual.

$$
d_{f}(\mu \| \nu) \geq \sup _{T \in \mathcal{T}}\left(\mathbf{E}_{x \sim \mu}[T(x)]-\mathbf{E}_{x \sim \nu}\left[f^{*}(T(x))\right]\right)
$$

- \mathcal{T} : Arbitrary class of functions $T: \mathcal{X} \rightarrow \mathbb{R}$
- f^{*} : Fenchel dual $f^{*}(t) \triangleq \sup _{u \in \operatorname{Dom}_{f}}(u t-f(u))$
- Estimated using Monte Carlo sampling.

