
Invariance through Mutual Information
Regularization

Justin Tan, Phillip Urquijo

University of Melbourne

April 16, 2019

Justin Tan IML 3 1



Flavor Physics

Precision flavor physics

Compare precise experimental measurements of
observables in B decays with theoretical
predictions; interpret discrepancies in terms of
new physics.

• Look for indirect effects of heavy unknown
particles in low energy observables of B
mesons.

Penguin processes:

Radiative: b → qγ

Electroweak:
b → q`+`−, q = s, d

• FCNCs, forbidden at leading order → rare
+ hard to observe!
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Figure 1: Radiative b → sγ (top) and elec-

troweak b → s`+`− (bottom) penguins

Justin Tan IML 3 2



Belle II

• Next generation B-physics experiment at SuperKEKB, an e+e− collider in
Japan.

• Target: 50× 109 e+e− → Υ(4S)→ BB̄ events by 2024.

• Large statistics → high precision measurements of penguin decay
observables: B(b → sγ),B(b → s``),RXs .

S. Cunli↵e · Prospects for rare B decays at Belle II

Figure 7: Sensitivity to an inclusive lepton uni-
versality ratio defined in Equation 1, for
two regions of squared invariant mass of
the lepton pair. To appear in [29].

squared invariant mass of the lepton pair,
1 < q2 < 6 GeV2/c4 [35]. Belle II will not over-
take the precision of these measurements but
will perform an independent verification. With
approximately 10 ab�1 (3 ab�1) Belle II will
reach the current precision of RK (RK⇤). How-
ever an analogous definition in terms of the in-
clusive decays,

RXs
⌘ B [B ! Xsµ

+µ�]

B [B ! Xse+e�]
, (1)

can be made. Such an observable would be chal-
lenging for LHCb, but could be measured with
percent-level precision at Belle II as shown in
Figure 7.

It is also possible to measure the di↵eren-
tial branching fraction (dB/dq2), ACP, and per-
form an angular analysis for these inclusive
B ! Xe+e� and B ! Xµ+µ� decays. In con-
trast to the angular analysis of the exclusive
B ! K⇤µ+µ� decay with many observables, in
an inclusive angular analysis it is only possible
to measure the forward-backward asymmetry of
the leptons (AFB). Current precision [36–38] is
around 30% for dB/dq2, and 20% for AFB and
ACP. Belle II will reach a precision of around
7% for dB/dq2 and 2 � 3% for AFB and ACP.
Figures 8 and 9 show the sensitivity for the for-

Figure 8: Sensitivity to the di↵erential branching
fraction (dB/dq2) in B ! Xs`

+`� de-
cays, for three regions of squared invari-
ant mass of the lepton (` = e, µ) pair.
To appear in [29].

mer two of these observables.

6.3. b ! s⌫⌫̄

Assuming that the B ! K⇤⌫⌫̄ decay occurs at
the rates predicted by the SM [39,40],

B
⇥
B+ ! K+⌫⌫̄

⇤
= (4.7 ± 0.6)⇥ 106;

B
⇥
B0 ! K⇤0⌫⌫̄

⇤
= (9.5 ± 1.1)⇥ 106,

Belle II will observe the process and measure
the branching fraction with 10 � 11% uncer-
tainty in 50 ab�1. This decay mode is of similar
interest to B0 ! K⇤0µ+µ� in terms of sensi-
tivity to CNP

9,10, however probing B ! K⇤⌫⌫̄ de-
cays also provides orthogonal information. For
B ! K⇤⌫⌫̄, the factorisation of hadronic e↵ects
is exact (since neutrinos are electrically neutral)
and could be used to extract B ! K hadronic
form-factors to high accuracy [29]. It is also
possible that B ! K⇤⌫⌫̄ can provide model-
dependent information to disentangle possible
NP e↵ects behind the current anomalies [39].

Experimentally, it is possible to use full event
reconstruction and construct the sum of the
missing energy and missing momentum in the
e+e� centre-of-momentum frame. The distri-
bution of this variable is shown in Figure 10.
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Figure 2: Sensitivity to lepton universality

ratio RXs in different q2 regions
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Figure 7: Sensitivity to an inclusive lepton uni-
versality ratio defined in Equation 1, for
two regions of squared invariant mass of
the lepton pair. To appear in [29].
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will perform an independent verification. With
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reach the current precision of RK (RK⇤). How-
ever an analogous definition in terms of the in-
clusive decays,

RXs
⌘ B [B ! Xsµ

+µ�]

B [B ! Xse+e�]
, (1)

can be made. Such an observable would be chal-
lenging for LHCb, but could be measured with
percent-level precision at Belle II as shown in
Figure 7.

It is also possible to measure the di↵eren-
tial branching fraction (dB/dq2), ACP, and per-
form an angular analysis for these inclusive
B ! Xe+e� and B ! Xµ+µ� decays. In con-
trast to the angular analysis of the exclusive
B ! K⇤µ+µ� decay with many observables, in
an inclusive angular analysis it is only possible
to measure the forward-backward asymmetry of
the leptons (AFB). Current precision [36–38] is
around 30% for dB/dq2, and 20% for AFB and
ACP. Belle II will reach a precision of around
7% for dB/dq2 and 2 � 3% for AFB and ACP.
Figures 8 and 9 show the sensitivity for the for-

Figure 8: Sensitivity to the di↵erential branching
fraction (dB/dq2) in B ! Xs`

+`� de-
cays, for three regions of squared invari-
ant mass of the lepton (` = e, µ) pair.
To appear in [29].

mer two of these observables.

6.3. b ! s⌫⌫̄

Assuming that the B ! K⇤⌫⌫̄ decay occurs at
the rates predicted by the SM [39,40],

B
⇥
B+ ! K+⌫⌫̄

⇤
= (4.7 ± 0.6)⇥ 106;

B
⇥
B0 ! K⇤0⌫⌫̄

⇤
= (9.5 ± 1.1)⇥ 106,

Belle II will observe the process and measure
the branching fraction with 10 � 11% uncer-
tainty in 50 ab�1. This decay mode is of similar
interest to B0 ! K⇤0µ+µ� in terms of sensi-
tivity to CNP

9,10, however probing B ! K⇤⌫⌫̄ de-
cays also provides orthogonal information. For
B ! K⇤⌫⌫̄, the factorisation of hadronic e↵ects
is exact (since neutrinos are electrically neutral)
and could be used to extract B ! K hadronic
form-factors to high accuracy [29]. It is also
possible that B ! K⇤⌫⌫̄ can provide model-
dependent information to disentangle possible
NP e↵ects behind the current anomalies [39].

Experimentally, it is possible to use full event
reconstruction and construct the sum of the
missing energy and missing momentum in the
e+e� centre-of-momentum frame. The distri-
bution of this variable is shown in Figure 10.
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Figure 3: Sensitivity to dB/dq2 in b → s``

decays in different q2 regions
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Signal Identification

• Identify signal peak in:

I Mbc =
√

E 2
beam − |~pB |2

• Extract physical observables by fitting signal
+ background model.

• Rely on interpolation of smooth background
spectrum from sidebands beneath signal peak.
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Learning algorithms preferentially select signal-like events → background
spectrum distortion → uncontrollable systematic uncertainties. Necessary to
avoid introduction of parameter-dependent bias in signal/background spectrum.

e.g. b → s`` analyses report results in regions of the q2 = M2
`` spectrum →

important that Mbc and q2 should remain unbiased
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Setup

• Train supervised learning algorithm to distinguish true signal b → sγ
events from background processes.

• Input data X consists of kinematic quantities and event topology
variables, ∼ 80 in total.

• Sensitive variable Z is the beam constrained mass Mbc .

• All variables with Pearson correlation with Z above 0.1 removed.

• Let parameters of the learning algorithm be θ (in this case, a neural
network).

• Treat network as an encoder X → E . After training, threshold
output E to reject 99.5% of background events.
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Sculpting

Classifier output Eθ(X ) ∼ p(signal|data) (calibration issues aside). Reject given
fraction of events by thresholding this output.
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Figure 4: Continuum Mbc before (green) and
after (blue) @ 0.995 suppression.
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Figure 5: Signal Mbc before (green) and after
(blue) @ 0.995 suppression.

Background artificially sculpted to resemble signal spectrum post-selection, a
result of a non-uniform selection efficiency.
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(Non-) Uniform Selection Efficiency
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Figure 6: Non-uniform selection efficiency of
background events in Mbc spectrum.
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Figure 7: Uniform selection efficiency of back-
ground events in Mbc spectrum.

• Decay observables measured by conducting a likelihood fit to certain
discriminating variables (here Mbc).

• Non-uniform selection efficiency in these variables may result in poorly
understood systematic uncertainties and increased reliance on (potentially
inaccurate) simulated data.
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Mutual Information

• Symmetric information measure between random variables X and Y .

I (X ,Y ) , EX ,Y

[
log

p(x , y)

p(x)p(y)

]

= H(Y )− H(Y |X )

• I (X ,Y ) ≥ 0 with equality if X ,Y independent.

• Entropy H is a measure of uncertainty in X :

H(X ) = −EX [log p(x)]

”Reduction in uncertainty in Y due to knowledge of X .”
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Mutual Information Penalty

• Treat neural network as an encoder encoding input data X → E .

• Strip dependency of encoding from sensitive variables where uniform
selection efficiency desirable (call it Z ).

• Augment cross-entropy objective with mutual information between
encoder output and variables where uniform selection efficiency is to
be enforced.

L (θf ;Z ) = Hp,q + λI (E ,Z )

I Hp,q: Generic classification loss

I I (E ,Z): Mutual information between encoding E and Z

• Penalize large information content between encoding and Z , penalty
strength determined by λ.

• Problem: mutual information intractable to compute in general*

Justin Tan IML 3 9



Estimating Mutual Information

• Variational lower bound on the mutual information (Nowozin et. al.,
NIPS 2016):

IV (Eθf (X ),Z ) = EPXZ
[Tω(Eθ(x), z)]− logEPX⊗PZ

[
eTω(Eθ(x),z)

]

≤ I (Eθf (X ),Z )

• Tω : X × Z → R: differentiable transformation parameterized by ω,
adjusted to maximize IV .

• Parameterize mappings Eθf and Tω by neural networks.

θt+1 ← θt − η′∇θL(θt , ωt)

ωt+1 ← ωt + η∇ωL(θt , ωt)
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Mutual Information Penalty

Objective: min
E

max
T

ED [− log pθ(y |x)] + λMI IV (Eθf (X ),Z ) (1)

• The classifier/encoder Eθf enforces decorrelation by minimizing
I (E ,Z ) simultaneously with the cross entropy.

• Tω tightens the lower bound by maximizing lower bound IV .

• λMI controls tradeoff between decorrelation and classification.
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Mutual Information Penalty
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Toy Example

• Data drawn from bivariate Gaussians:

s1 ∼ N
((

z
0

)
,

(
1 0.5

0.5 1

))
, s2 ∼ N

((
0

1.5

)
,

(
1 0
0 1

))
• Classify individual samples according to (x , y) coordinates, penalizing

dependency on noisy x dimension.
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Figure 8: Curvature of contours in decision sur-
face indicates dependency on x .
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Figure 9: Penalization of objective function
straightens contours and reduces x dependency.
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Experiments 2

• Signal classification in FCNC b → sγ, want to enforce decorrelation
with Z = Mbc ≡

√
E 2
beam − |~pB |2.

• Classifier architecture: 5 layer densely connected network with 512
nodes per layer, SGD (η′ = 1e-4) w/ Nesterov Momentum
(γ = 0.9).

• Auxillary architecture: 2 dense layers, [256, 128], Adam (η = 1e-5)

• Need to use exponential moving average in practice:

~φt+1 ← ~φt + α
(
~φt+1 − ~φt

)
, α ∈ [0, 1]

• 7.6M training events, 1.5M test, 5 epochs.
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Experiments 2 (Background only)
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Experiments 2 (Background + Signal) @ εB = 0.99
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No Free Lunch
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Figure 10: Decorrelation performance penalty. b → sγ events.
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No Free Lunch
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Figure 11: Decorrelation performance penalty. b → sγ events.
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Mutual Information as f -Divergence

• f -Divergence: ’Distance’ between two probability distributions.

dKL(µ‖ν) = Ex∼µ

[
log

µ(x)

ν(x)

]

• Interpretation as KL divergence between joint and product of
marginals.

I (X ,Y ) , EX ,Y

[
log

p(x , y)

p(x)p(y)

]

= dKL (p(x , y)||p(x)p(y))

• Consider the symmetric, bounded form of dKL:

dJS(µ||ν) ,
1

2
(dKL (µ||m) + dKL (ν||m))

m =
1

2
(µ+ ν)
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Jensen-Shannon Divergence Proxy arXiv:1606.00709

• Mutual information minimization ⇔ f -divergence minimization.

• Enforce decorrelation ⇔ Minimize f -divergence between joint PXZ

and product of marginals PX ⊗ PZ .

• Variational lower bound on dJS (PX ‖PY ):

F (ω) = EPX
[log σ (Tω(x , y))]−EPY

[log (1− σ (Tω(x , y)))]

≤ dJS (PX ‖PY )− log 4

• Numerically stable. 4
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Mutual Information Penalty v2

• Minimize mutual information between PXZ and PX ⊗ PZ through
minimization of divergence dJS(PXZ ‖PX ⊗ PZ ).

I
(JS)
V (Eθ(X ),Z ) = EPXZ

[log σ (Tω(Eθ(x), z))]−
EPX⊗PZ

[log (1− σ (Tω(Eθ(x), z)))]

• Numerically stable objective is the sum of two cross-entropy terms.
One promotes discrimination power while the other reduces
classification dependence on Z .

Objective: min
E

max
T

ED [− log pθ(y |x)] + λMI I
(JS)
V (Eθ(X ),Z ) (2)

Justin Tan IML 3 22



Comparisons

• Use b → sγ sample prepared using centralized Belle II simulation.
I Investigate effect on fit observables extracted through Mbc pdf after

0.999 background rejection.

I Fix signal PDF shape parameters to original signal sample
pre-selection.

I Float signal/background yields + background shape.

• Optimize for parameter error: (Nsig/δNsig )
I δNsig is the error reported by the covariance matrix.

I Says nothing about goodness of fit.

I Metric can probably be improved.
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NS/δNS
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Evaluation

• Isolate the effect of fundamental algorithm design from model
hyperparameters.

• Run fair automated comparisons with similar techniques. (Fair = same
computational budget).

• Select hyperparameters that give high reward NS/δNS .

• Test model sensitivity to hyperparameters by showing distribution of
maximum reward achieved by each model (64 samples per model).
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Summary

• Tension between optimal discrimination and systematic errors in
searches for NP using ML techniques.

• Methods based on information penalties are an accessible way to
prevent background sculpting without significant compromise on
discrimination power.

Balance background rejection with controlling systematic uncertainties to
achieve better sensitivity to new physics.

justin.tan@coepp.org.au
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Implementation

These gradient-based penalties rely on
automatic differentiation frameworks.

I Data collection: ROOT

I To Python: uproot

I Preprocessing: Spark/Pandas

• Workflow scalable to O(100) GB worth
of training data.

• TensorFlow:
I Open-source: No black boxes. 4

I Fine-grained control over entire
architecture. 4
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Motivation

• Non-SM contributions enter through hypothetical new TeV-scale
particles running within the loop → interference with known
amplitudes.

• Strong constraints on NP by measurement of inclusive/exclusive BR,
CP asymmetries.
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Figure 12: Example of SM radiative pen-
guin decay for b → sγ [2]
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Figure 13: Example of hypothetical SUSY
contribution to radiative decay [2]
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Mutual Information arXiv:physics/0004057

• Glossary:
I D = (X ,Y ): True example distribution, X ∈ RD , y ∈ [0, 1] ∼ p

I E = Eθf (X ) ∈ R: Encoder1 output parameterized by θf , E ∼ q

I Z : Variables we would like to remain unbiased

• Want to reduce information content of Z stored in encoding Eθf (X ).

• Bound I (Eθf (X ),Z ) with Lagrange multiplier λMI :

L (θf ;Z ) = Hp,q + λMI I (E ,Z ) (3)

• Problem: I (X ,Y ) between (non-Gaussian) continuous variables
intractable.
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Experiments 2
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Figure 14: Mutual Information growth over training for different values of λMI
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Mutual Information as f -Divergence

• f -Divergence: ’Distance’ between two probability distributions.

dKL(µ‖ν) = Ex∼µ

[
log

µ(x)

ν(x)

]

• Interpretation as KL divergence between joint and product of
marginals.

I (X ,Y ) , EX ,Y

[
log

p(x , y)

p(x)p(y)

]

= dKL (p(x , y)||p(x)p(y))

• Consider the symmetric, bounded form of dKL:

dJS(µ||ν) ,
1

2
(dKL (µ||m) + dKL (ν||m))

m =
1

2
(µ+ ν)
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Jensen-Shannon Divergence Proxy arXiv:1606.00709

• Mutual information minimization ⇔ f -divergence minimization.

• Variational lower bound on dJS (PX ‖PY ):

F (ω) = EPX
[log σ (Tω(x , y))]−EPY

[log (1− σ (Tω(x , y)))]

≤ dJS (PX ‖PY )− log 4

• Numerically stable. 4

• Enforce decorrelation ⇔ Minimize f -divergence between joint PXZ

and product of marginals PX ⊗ PZ .
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Mutual Information Penalty v2

• Minimize mutual information between PXZ and PX ⊗ PZ through
minimization of divergence dJS(PXZ ‖PX ⊗ PZ ).

I
(JS)
V (Eθ(X ),Z ) = EPXZ

[log σ (Tω(Eθ(x), z))]−
EPX⊗PZ

[log (1− σ (Tω(Eθ(x), z)))]

• Numerically stable objective is the sum of two cross-entropy terms.
One promotes discrimination power while the other reduces
classification dependence on Z .

Objective: min
E

max
T

ED [− log pθ(y |x)] + λMI I
(JS)
V (Eθ(X ),Z ) (4)
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f -Divergences

• Measure disimilarity between two given probability distributions.

df (µ‖ν) ,
∫

X
ν(x)f

(
µ(x)

ν(x)

)

I Generator f : R+ → R convex with f (1) = 0

I KL-Divergence: f (v) = v log v

• Variational lower bound by applying Jensen’s inequality to Fenchel
dual-dual.

df (µ‖ν) ≥ sup
T∈T

(Ex∼µ [T (x)]−Ex∼ν [f ∗(T (x))])

I T : Arbitrary class of functions T : X → R

I f ∗: Fenchel dual f ∗(t) , supu∈Domf
(ut − f (u))

I Estimated using Monte Carlo sampling.
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