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(a) Each dot represents one energy deposit from Geant4 and
the color of the dot encodes the energy. The absorber-gap

structure is clearly visible, where most of the energy is lost in
the absorber.
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(b) Discretized version of (a), in which energy depositions are
assigned to individual, discrete detector cells.

FIG. 1: The electromagnetic shower from one 10 GeV
electron event. The boundaries of the cells are shown,

projecting out the � segmentation.

and the hypothesized image from the current layer, I,
and learns a per-pixel attention weight W via a weighting
function !(I, I

0
) such that the pre-ReLU version of the

current layer is W � I + (1 � W ) � I
0
, where � is the

Hadamard product. This end-to-end trainable unit can
utilize information about the two layers to decide what
information to propagate through from the previous par-
ticle deposition. An alternative architectural choice that
includes a recurrent connection will be subject of future
studies.

Leaky Rectified Linear Units [57] are chosen as activa-
tion functions throughout the system, with the exception
of the output layers of G, in which we prefer Rectified
Linear Units [58] for the creation of sparse samples [19].

In the discriminator (shown in Fig. 5), the feature
space produced by each LAGAN-style output stream is

η
z

φ

FIG. 2: Three-dimensional representation of a 10 GeV e
+

incident perpendicular to the center of the detector.
Not-to-scale separation among the longitudinal layers is

added for visualization purposes.

FIG. 3: Two-dimensional, per-layer representation of the
same shower as in Fig. 2.

augmented with a sub-differentiable version of sparsity
percentage [59], as well as minibatch discrimination [48]
on both the standard locally connected network-produced
features and the output sparsity itself, to ensure a well
examined space of sparsities. These are represented in
Fig. 5 by the ‘features’ vector.

The discriminator is further customized with domain-
specific features to ensure fidelity of samples. Given
the importance of matching the requested energy E, D
directly calculates the empirical energy per layer Êi, i 2
{0, 1, 2}, as well as the total energy Êtot. Minibatch
discrimination is performed on this vector of per-layer
energies to ensure a proper distributional understanding.
We also add |E�Êtot| as a feature, as well as I{|E�Êtot|>"}
with " = 5 GeV – a binary, sub-differentiable feature which
encodes the tolerance for GAN-produced scatterings to
be incorrect in their reconstructed energy.

Further specifications of the exact hyper-parameter
and architectural choices as well as software versioning
constraints are available in the source code [60].

Two additional architectural modifications were tested
in order to build a particle-type conditioning system di-
rectly into the learning process. Neither the AC-GAN [43]
nor the conditional GAN [44] frameworks were able to
handle the substantial differences among the three particle
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Generative Models for EM Shower Simulation

• CaloGAN showed that it is possible to simulate EM showers for 
a detector like ATLAS using GANs 

• Since then you’ve seen many GANs for particle physics 

• What’s so special about these Generative Models (GAN, VAE) 
presented in this talk?
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The precise modeling of subatomic particle interactions and propagation through matter is
paramount for the advancement of nuclear and particle physics searches and precision measurements.
The most computationally expensive step in the simulation pipeline of a typical experiment at the
Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that
govern the motion and evolution of particle showers inside calorimeters. We introduce CaloGAN, a
new fast simulation technique based on generative adversarial networks (GANs). We apply these
neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter,
and achieve speedup factors comparable to or better than existing full simulation techniques on
CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 105⇥). There are still challenges for achieving
precision across the entire phase space, but our solution can reproduce a variety of geometric shower
shape properties of photons, positrons and charged pions. This represents a significant stepping
stone toward a full neural network-based detector simulation that could save significant computing
time and enable many analyses now and in the future.

I. INTRODUCTION

The physics programs of all experiments based at the
LHC rely heavily on detailed simulation for all aspects
of event reconstruction and data analysis. Simulated
particle collisions, decays, and material interactions are
used to interpret the results of ongoing experiments and
estimate the performance of new ones, including detector
upgrades.

State-of-the-art simulations are able to precisely model
detector geometries and physical processes spanning dis-
tance scales as small as 10�20 m for the initial parton-
parton scattering, all the way to the material interactions
at meter length scales. These processes, which include
nuclear and atomic interactions, such as ionization, as
well as strong, weak, and electromagnetic processes, will
alter the state of incoming particles as they propagate
through and interact with layers of material in the vari-
ous detector components. Detection techniques such as
calorimetry exploit these physical interactions to detect
the presence and measure the energy of particles such as
photons, electrons and hadrons via their interactions with
hundreds of thousands of detector components. Upon
interaction with a calorimeter, a cascade (shower) of sec-
ondary particles is produced and their energy is collected
and transformed into electric signals.

Physics-based (full simulation) modeling of particle
showers in calorimeters (with Geant4 [1] as the state
of the art) is the most computationally demanding part
of the whole simulation process, and can take minutes
per event on modern, distributed high performance plat-
forms [2, 3]. The production of physics results is often
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† lukedeoliveira@lbl.gov
‡ bnachman@cern.ch

limited by the absence of adequate Monte Carlo (MC)
simulation, and the increase in luminosity at the LHC will
only exacerbate the problem. For example, the ATLAS
and CMS experiments at the high-luminosity phase of the
LHC (HL-LHC) will each see about 3 billion top quark
pair events [4–10]; for a MC statistical uncertainty that
is significantly below the data uncertainty, hundreds of
billion simulated events would be required. This is not
possible using full detector simulation techniques with
existing computing resources. Currently, full MC sim-
ulation occupies 50-70% of the experiments’ worldwide
computing resources, equivalent to billions of CPU hours
per year [11–13].

The relevance of the calorimeter simulation step has
sparked the development of approximate, fast simulation
solutions to mitigate its computational complexity. Fast
simulation techniques rely on parametrized showers [14–
16] for fluctuations, and look-up tables for low energy
interactions [17]. For many applications, these techniques
are sufficient. However, analyses that utilize the detailed
structure of showers for particle identification as well as
energy and direction calibration may not be able to rely
on these simplified approaches [18].

We introduce a Deep Learning model to enable high-
fidelity fast simulation of particle showers in electro-
magnetic calorimeters. Previous work [19] assessed the
viability of GAN-based simulation of jet-images [20] –
sparse, structured, 2D representations of jet fragmen-
tation analogous to a single-layer, idealized calorimeter
– and focused on providing architectural guidelines for
this regime. Neural network-based generation, including
GANs, Variational Auto-Encoders [21], and Adversarial
Auto-Encoders [22], have also been tested in other areas
of science, such as Cosmology [23, 24], Condensed Mat-
ter Physics [25], and Oncology [26]. The longitudinally
segmented calorimeter simulation addressed in this work
offers unique challenges due to the sparsity of hit cells,
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Train and validate using G4 
simulations for the ATLAS geometry 
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Figure 1: Illustration of possible alignments in � for the front layer, (left, showing a 8 ⇥ 3 portion of the 56 ⇥ 3 cell
image) and the back layer (bottom, showing a 4 ⇥ 1 portion of the 4 ⇥ 7 cell image) with respect to the middle layer
(center, showing the full 7 ⇥ 7 image). The front (back) layer are visualized to the left (bottom) of the middle layer
to illustrate the alignments in � (⌘), but are actually one behind another in the third dimension.

3 Monte Carlo samples and preprocessing

The ATLAS simulation infrastructure, consisting of event generation, detector simulation and digitization,
is used to produce and validate the samples used for the studies presented in this note. Samples of single
unconverted photons are simulated using Geant4 10.1.patch03.atlas02, the standard MC16 RUN2 ATLAS
geometry (ATLAS-R2-2016-01-00-01) with the conditions tag OFLCOND-MC16-SDR-14. The simulation
employs the FTFP_BERT physics list [14], i.e. uses the Geant4 Bertini-style cascade [15–17] to simulate
hadron-nucleus interactions at low incident hadron energies, and the Fritiof parton string model [18, 19]
at higher energies, followed by the Geant4 precompound model to de-excite the nucleus. Specific to
the version used by ATLAS is that the handover between the models is performed in the energy region
between 9 GeV and 12 GeV.

The samples are generated for nine discrete particle energies logarithmically spaced in the range between
approximately 1 and 260 GeV and uniformly distributed in 0.20 < |⌘ | < 0.25. The truth particles are
generated on the calorimeter surface, i.e. the handover boundary between inner detector and the calorimeter
in the integrated simulation framework. Thus, the showers are not subject to energy losses in the inner
detector and the cryostat/solenoid magnet. Each simulated sample contains up to 10000 generated events,
totaling approximately 90000 events. The generated samples do not include displacements corresponding
to the expected beam spread of the ATLAS interaction region. Alongside the energy deposited in the
calorimeter cells, the detailed spatial position of each energy deposit is saved. In the digitization of the
Geant4 hit output, electronic noise, cross talk between neighbouring cells and dead cells are turned o�.
Cell energies are required to be positive. Overlapping showers in this setup do not exactly factorize.

The showers originating from photons deposit almost their entire energy in the EM calorimeter and show
little leakage into the hadronic calorimeter. Therefore only layers of the EM calorimeter are considered.
Considering calorimeter cells as cuboids, for each layer the energy deposits within a rectangular selection

4

First efforts to simulate the real, present 
day, irregular, coarse granularity ATLAS 
calorimeter with Generative Models
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(a) Each dot represents one energy deposit from Geant4 and
the color of the dot encodes the energy. The absorber-gap

structure is clearly visible, where most of the energy is lost in
the absorber.
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(b) Discretized version of (a), in which energy depositions are
assigned to individual, discrete detector cells.

FIG. 1: The electromagnetic shower from one 10 GeV
electron event. The boundaries of the cells are shown,

projecting out the � segmentation.

and the hypothesized image from the current layer, I,
and learns a per-pixel attention weight W via a weighting
function !(I, I

0
) such that the pre-ReLU version of the

current layer is W � I + (1 � W ) � I
0
, where � is the

Hadamard product. This end-to-end trainable unit can
utilize information about the two layers to decide what
information to propagate through from the previous par-
ticle deposition. An alternative architectural choice that
includes a recurrent connection will be subject of future
studies.

Leaky Rectified Linear Units [57] are chosen as activa-
tion functions throughout the system, with the exception
of the output layers of G, in which we prefer Rectified
Linear Units [58] for the creation of sparse samples [19].

In the discriminator (shown in Fig. 5), the feature
space produced by each LAGAN-style output stream is
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FIG. 2: Three-dimensional representation of a 10 GeV e
+

incident perpendicular to the center of the detector.
Not-to-scale separation among the longitudinal layers is

added for visualization purposes.

FIG. 3: Two-dimensional, per-layer representation of the
same shower as in Fig. 2.

augmented with a sub-differentiable version of sparsity
percentage [59], as well as minibatch discrimination [48]
on both the standard locally connected network-produced
features and the output sparsity itself, to ensure a well
examined space of sparsities. These are represented in
Fig. 5 by the ‘features’ vector.

The discriminator is further customized with domain-
specific features to ensure fidelity of samples. Given
the importance of matching the requested energy E, D
directly calculates the empirical energy per layer Êi, i 2
{0, 1, 2}, as well as the total energy Êtot. Minibatch
discrimination is performed on this vector of per-layer
energies to ensure a proper distributional understanding.
We also add |E�Êtot| as a feature, as well as I{|E�Êtot|>"}
with " = 5 GeV – a binary, sub-differentiable feature which
encodes the tolerance for GAN-produced scatterings to
be incorrect in their reconstructed energy.

Further specifications of the exact hyper-parameter
and architectural choices as well as software versioning
constraints are available in the source code [60].

Two additional architectural modifications were tested
in order to build a particle-type conditioning system di-
rectly into the learning process. Neither the AC-GAN [43]
nor the conditional GAN [44] frameworks were able to
handle the substantial differences among the three particle
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Generative Models for EM Shower Simulation in ATLAS

• ATLAS already using fast simulation techniques for years! 

• Trade-off between slow accurate G4 and fast less accurate 
FastCaloSim V1 

• New FastCaloSim V2 using some ML techniques already in 
advanced state of development

CaloGAN Paganini et al.
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The precise modeling of subatomic particle interactions and propagation through matter is
paramount for the advancement of nuclear and particle physics searches and precision measurements.
The most computationally expensive step in the simulation pipeline of a typical experiment at the
Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that
govern the motion and evolution of particle showers inside calorimeters. We introduce CaloGAN, a
new fast simulation technique based on generative adversarial networks (GANs). We apply these
neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter,
and achieve speedup factors comparable to or better than existing full simulation techniques on
CPU (100⇥-1000⇥) and even faster on GPU (up to ⇠ 105⇥). There are still challenges for achieving
precision across the entire phase space, but our solution can reproduce a variety of geometric shower
shape properties of photons, positrons and charged pions. This represents a significant stepping
stone toward a full neural network-based detector simulation that could save significant computing
time and enable many analyses now and in the future.

I. INTRODUCTION

The physics programs of all experiments based at the
LHC rely heavily on detailed simulation for all aspects
of event reconstruction and data analysis. Simulated
particle collisions, decays, and material interactions are
used to interpret the results of ongoing experiments and
estimate the performance of new ones, including detector
upgrades.

State-of-the-art simulations are able to precisely model
detector geometries and physical processes spanning dis-
tance scales as small as 10�20 m for the initial parton-
parton scattering, all the way to the material interactions
at meter length scales. These processes, which include
nuclear and atomic interactions, such as ionization, as
well as strong, weak, and electromagnetic processes, will
alter the state of incoming particles as they propagate
through and interact with layers of material in the vari-
ous detector components. Detection techniques such as
calorimetry exploit these physical interactions to detect
the presence and measure the energy of particles such as
photons, electrons and hadrons via their interactions with
hundreds of thousands of detector components. Upon
interaction with a calorimeter, a cascade (shower) of sec-
ondary particles is produced and their energy is collected
and transformed into electric signals.

Physics-based (full simulation) modeling of particle
showers in calorimeters (with Geant4 [1] as the state
of the art) is the most computationally demanding part
of the whole simulation process, and can take minutes
per event on modern, distributed high performance plat-
forms [2, 3]. The production of physics results is often
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limited by the absence of adequate Monte Carlo (MC)
simulation, and the increase in luminosity at the LHC will
only exacerbate the problem. For example, the ATLAS
and CMS experiments at the high-luminosity phase of the
LHC (HL-LHC) will each see about 3 billion top quark
pair events [4–10]; for a MC statistical uncertainty that
is significantly below the data uncertainty, hundreds of
billion simulated events would be required. This is not
possible using full detector simulation techniques with
existing computing resources. Currently, full MC sim-
ulation occupies 50-70% of the experiments’ worldwide
computing resources, equivalent to billions of CPU hours
per year [11–13].

The relevance of the calorimeter simulation step has
sparked the development of approximate, fast simulation
solutions to mitigate its computational complexity. Fast
simulation techniques rely on parametrized showers [14–
16] for fluctuations, and look-up tables for low energy
interactions [17]. For many applications, these techniques
are sufficient. However, analyses that utilize the detailed
structure of showers for particle identification as well as
energy and direction calibration may not be able to rely
on these simplified approaches [18].

We introduce a Deep Learning model to enable high-
fidelity fast simulation of particle showers in electro-
magnetic calorimeters. Previous work [19] assessed the
viability of GAN-based simulation of jet-images [20] –
sparse, structured, 2D representations of jet fragmen-
tation analogous to a single-layer, idealized calorimeter
– and focused on providing architectural guidelines for
this regime. Neural network-based generation, including
GANs, Variational Auto-Encoders [21], and Adversarial
Auto-Encoders [22], have also been tested in other areas
of science, such as Cosmology [23, 24], Condensed Mat-
ter Physics [25], and Oncology [26]. The longitudinally
segmented calorimeter simulation addressed in this work
offers unique challenges due to the sparsity of hit cells,
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Figure 13: Distribution of Emiss
T

for events with at least one jet with pT > 20 GeV computed from

cells from topological clusters in jets (left) and Emiss
T

computed from cells from topological clusters

not contained in other reconstructed objects (right). All cell energies are calibrated with GCW. The

filled histogram shows the full Geant 4 simulation and the open squares with error bars show Atlfast-II,

respectively.

7 Conclusion

The fast calorimeter simulation FastCaloSim has been developed in order to reduce the simulation time in

the ATLAS calorimeter system from several minutes to a few seconds per event, using a parametrization

model for the longitudinal and lateral shower development of photons, electrons and charged pions. The

fast simulation performance was validated against the full Geant 4 based detector simulation for photons,

electrons and isolated charged hadrons.

Finally, the performance for the simulation of jets and the missing transverse energy was compared

between Atlfast-II and the full Geant 4 simulation. Overall a good agreement between Atlfast-II and the

full Geant 4 simulation is observed inside the tested kinematic reach.
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The simulation principle and performance of the ATLAS fast calorimeter

simulation FastCaloSim
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Abstract

The FastCaloSim calorimeter simulation was developed to provide a reasonably accurate

but still fast simulation of the ATLAS calorimeter system. Parametrizations of electromag-

netic and hadronic calorimeter showers are used to deposit particle energies in the detailed

calorimeter structure.

In the present document a short overview of the fast calorimeter simulation principle

is presented. This is followed by a comparison of individual particle signatures and event

properties to the full Geant 4 based ATLAS detector simulation.

ATL-PHYS-PUB-2010-013
18 October 2010

A
T

L
A

S
N

O
T

E
O
cto

b
er

1
7
,
2
0
1
0

T
h
e
sim

u
la
tio

n
p
rin

cip
le
a
n
d
p
erfo

rm
a
n
ce

o
f
th
e
A
T
L
A
S
fa
st
ca
lo
rim

eter

sim
u
la
tio

n
F
a
stC

a
lo
S
im

T
h
e
A
T
L
A
S
C
o
llab

o
ratio

n

A
b
stra

ct

T
h
e
F
astC

alo
S
im

calo
rim

eter
sim

u
latio

n
w
as

d
ev
elo

p
ed

to
p
ro
v
id
e
a
reaso

n
ab
ly
accu

rate

bu
t
still

fast
sim

u
latio

n
o
f
th
e
A
T
L
A
S
calo

rim
eter

sy
stem

.
P
aram

etrizatio
n
s
o
f
electro

m
ag
-

n
etic

an
d
h
ad
ro
n
ic

calo
rim

eter
sh
ow

ers
are

u
sed

to
d
ep
o
sit

p
article

en
erg

ies
in

th
e
d
etailed

calo
rim

eter
stru

ctu
re.

In
th
e
p
resen

t
d
o
cu
m
en
t
a
sh
o
rt
o
v
erv

iew
o
f
th
e
fast

calo
rim

eter
sim

u
latio

n
p
rin

cip
le

is
p
resen

ted
.
T
h
is
is
fo
llow

ed
b
y
a
co
m
p
ariso

n
o
f
in
d
iv
id
u
al

p
article

sig
n
atu

res
an
d
ev
en
t

p
ro
p
erties

to
th
e
fu
ll
G
ean

t
4
b
ased

A
T
L
A
S
d
etecto

r
sim

u
latio

n
.

A
T

L
-S

O
F

T
-P

U
B

-2
0
1
8
-0

0
2

1
2

Ju
ly

2
0

1
8

ATLAS PUB Note
ATL-SOFT-PUB-2018-002

10th July 2018

The new Fast Calorimeter Simulation in ATLAS

The ATLAS Collaboration

ATLAS relies on very large samples of simulated events for delivering high-quality and
competitive physics results, but producing these samples is very CPU intensive when using
the full GEANT4 detector simulation. Fast simulation tools are a useful way of reducing
CPU requirements when detailed detector simulations are not needed. During Run 1 and 2
of the LHC, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS.
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to optimise the amount of information stored in the ATLAS simulation infrastructure. This
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during the simulation jobs. A prototype is being tested and validated, and it has shown
significant improvements in the modelling of cluster-level variables in electromagnetic and
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G4 takes ~10 seconds per shower for a 65 GeV 
single photon shower (more for higher energy)  

Too slow!

https://arxiv.org/pdf/1712.10321.pdf
https://cds.cern.ch/record/1300517/files/ATL-PHYS-PUB-2010-013.pdf
http://cdsweb.cern.ch/record/2630434/files/ATL-SOFT-PUB-2018-002.pdf


First efforts to simulate the real, present 
day, irregular, coarse granularity ATLAS 
Calorimeter with Generative Models

5

Human designed parameterisation techniques being developed for many years -> A high 
benchmark against which to compare GAN / VAE performance  

Validation cross-check frameworks already in place for FastCaloSim including variables 
defined by the EGamma group: same level of scrutiny for all fast simulation approaches. 

Need to get all distributions right simultaneously, average distributions might look right 
but must verify also the distributions per energy point / section of the calorimeter

Hasib Ahmed(U Edinburgh)
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New approaches of fast simulation: FastCaloSimV2
Parametrization based approach following FastCaloSimV1

• PCA transformation to decorrelate energy deposit in 
each layer 

• Leading PCA component is used to divide the Geant4 
dataset into subsets 

• Each subset represents shower with similar feature    
• Longitudinal and lateral parametrization for each subset

G4 simulated
particles in

E-η grid

Total energy,
Energy fractions in

each layer

Principle Component
Analysis (PCA)
N components

1st PCA  to
divide

Geant4 dataset

Longitudinal
parametrization

Lateral
parametrization

strong correlation 
between layers!

Hasib Ahmed(U Edinburgh) !6

Longitudinal Shower Parametrization
FastCaloSimV2

Additional PCA transformation to further decorrelation

Multi-layer perceptron (MLP) for regression of  energy cumulants 

Parametrization of  discrete energy points, spline function for interpolation 

Geant4 datasets
divided via

1st PCA

additional PCA
for further

decorrelated
dataset
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Still have to parameterise 
separately for η slices, energies, 
interpolation …

(Only small eta region in barrel for photons right now)
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Need for fast shower simulation: Monte Carlo Production

Physics Analysis

Successful Physics program in ATLAS depends on the 
availability of  high statistics Monte Carlo simulated 

events 

Geant4 requires significant resources with ~75% 
spent in shower simulation i.e. Calorimeter simulation

The increased pileup at HL-LHC will also increase 
the CPU requirement for the same number of  hard 

scattered events 

Imperative to develop fast shower simulations compared to Geant4 

6

Introduction (Finally)

Is it possible to one day…? : 

Simulate showers 100-1000x faster than Geant4 

Less human time intensive, higher accuracy than current fast 
simulation methods 

Have it run inside Athena (ATLAS C++ software) and be less 
resource hungry than current fast simulation methods 

Imperative to develop fast shower simulations compared to Geant4

Geant4 requires significant resources with ~75% spent in shower 
simulation i.e. Calorimeter simulation
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Our WGAN-GP Architecture
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50k ‘epochs’, 7 hours training, 1 GPU 

100 epochs, 2 mins, CPU 

Training dataset:
• Single photon samples from 

Geant4
  • 88000 events
• 9 energy points : {1, 2, 4, 8, 16, 

32, 65, 131, 262} GeV 
• 0.20 < |η| < 0.25  
• 4 electromagnetic calorimeter 

layers

Data preprocessing
• Negative energies set to 0

  • Mirror η < 0
 

https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf
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Figure 2: Schematic representation of the architecture of the VAE used in this note. It is composed of two stacked
neural networks, each comprising of 4 hidden layers with decreasing/increasing number of units per layer, acting as
encoder and decoder respectively. The model uses exponential linear units (ELUs) [22] and Sigmoid function for
the output layer as activation functions. The implemented algorithm is conditioned on the energy of the incident
particle to generate showers corresponding to a specific energy.

are selected. The dimension of the rectangle for the middle layer is chosen to be 7 ⇥ 7 cells in ⌘ ⇥ �,
containing more than 99 % of the total energy deposited by a typical shower in this layer. The dimensions
of the remaining layers are chosen such that the spread in ⌘ and � of the middle layer rectangle is covered.
The dimensions for the presampler, front and back layer are 7 ⇥ 3, 56 ⇥ 3 and 4 ⇥ 7, respectively. In total
the energy deposits in 266 cells are considered. For training the neural networks, the energy values are
normalized to the energy of the incident particle.

All cells are selected with respect to the impact cell, defined as the cell in the middle layer closest to the
extrapolated position of the photon, taking into account two possible alignments of the back layer and four
possible alignments of the presampler and front layer with respect to the impact cell in the middle layer
when considering the simplified cuboid geometry. This is illustrated in Fig. 1. Throughout the note, the
raw values of the calorimeter cells’ ⌘ and � are used, i.e. not taking into account corrections accounting
for imperfections of the detector, such as sagging under its own weight, or misalignment.

4 Algorithms

The architecture of the studied neural networks, the objective functions used in the training, as well as the
tuning of the hyperparameters and their impact on the shower simulation are discussed in this section. A
general introduction to machine learning is given for example in Refs. [20, 21].

4.1 Variational Autoencoders

VAEs [8, 9] are a class of unsupervised learning algorithms combining deep learning with variational
Bayesian methods and can be used as generative models. The algorithm explored in this note is composed
of two stacked neural networks, each comprising of 4 hidden layers, acting as encoder and decoder
respectively. The architecture is illustrated in Fig. 2. The number of units per layer decreases for subsequent

5

(WGAN-GP, Improved WGAN-GP nightmare on Keras!)

VAE:

GAN:

https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf
https://arxiv.org/abs/1704.00028
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Figure 11: Average energy deposition in the cells of the individual calorimeter layers as a function of the distance
in ⌘ from the impact point of the particles for photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The chosen bin widths correspond to the cell widths in each of the layers. The energy
depositions from a full detector simulation (black markers) are shown as reference and compared to the ones of a
VAE (solid red line) and a GAN (solid blue line). The shown error bars and the hatched bands indicate the statistical
uncertainty of the reference data and the synthesized samples, respectively. The underflow and overflow is included
in the first and last bin of each distribution, respectively. The showers simulated by Geant4 deposit on average
approximately 0.7 %, 17.2 %, 79.3 % and 0.4 % of the true photon energy in the presampler, front, middle and back
layer, respectively. The showers synthesized by the VAE (GAN) deposit on average approximately 0.6 % (0.8 %),
19.1 % (19.8 %), 77.6 % (78.1 %) and 0.6 % (0.5 %) of the true photon energy in the presampler, front, middle and
back layer, respectively.
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Figure 11: Average energy deposition in the cells of the individual calorimeter layers as a function of the distance
in ⌘ from the impact point of the particles for photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The chosen bin widths correspond to the cell widths in each of the layers. The energy
depositions from a full detector simulation (black markers) are shown as reference and compared to the ones of a
VAE (solid red line) and a GAN (solid blue line). The shown error bars and the hatched bands indicate the statistical
uncertainty of the reference data and the synthesized samples, respectively. The underflow and overflow is included
in the first and last bin of each distribution, respectively. The showers simulated by Geant4 deposit on average
approximately 0.7 %, 17.2 %, 79.3 % and 0.4 % of the true photon energy in the presampler, front, middle and back
layer, respectively. The showers synthesized by the VAE (GAN) deposit on average approximately 0.6 % (0.8 %),
19.1 % (19.8 %), 77.6 % (78.1 %) and 0.6 % (0.5 %) of the true photon energy in the presampler, front, middle and
back layer, respectively.
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Figure 7: Energy deposited in the individual calorimeter layers for photons with an energy of approximately 65 GeV
in the range 0.20 < |⌘ | < 0.25. The energy depositions from a full detector simulation (black markers) are shown as
reference and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and
the hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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2018 Results(1/3)
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GAN: Fluctuations due to small training size, fixed since 
PubNote. 4% -> 50% of dataset by removing momentum 

from Adam optimiser, lowering number of epochs

https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf
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Figure 8: Reconstructed longitudinal shower center for photons with an energy of (a) 4 GeV, (b) 65 GeV and (c)
260 GeV in the range 0.20 < |⌘ | < 0.25. The shower depth for the full detector simulation (black markers) is shown
as reference and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error
bars and the hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples,
respectively. The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 12: Average energy deposition in the cells of the individual calorimeter layers as a function of the distance
in � from the impact point of the particles for photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The chosen bin widths correspond to the cell widths in each of the layers. The energy
depositions from a full detector simulation (black markers) are shown as reference and compared to the ones of a
VAE (solid red line) and a GAN (solid blue line). The shown error bars and the hatched bands indicate the statistical
uncertainty of the reference data and the synthesized samples, respectively. The underflow and overflow is included
in the first and last bin of each distribution, respectively. The showers simulated by Geant4 deposit on average
approximately 0.7 %, 17.2 %, 79.3 % and 0.4 % of the true photon energy in the presampler, front, middle and back
layer, respectively. The showers synthesized by the VAE (GAN) deposit on average approximately 0.6 % (0.8 %),
19.1 % (19.8 %), 77.6 % (78.1 %) and 0.6 % (0.5 %) of the true photon energy in the presampler, front, middle and
back layer, respectively.

19

https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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η, φ, other distributions not so bad 
but for total energy… 

GAN gets the means but not the 
widths of the energies 

Critic can’t see the difference in 
real and fake images.

Tried training on single high energy point, 
Minibatch discrimination, various other tricks. No result.  

https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf


Trade-Off b/w Distributions and Total Energy

11

And highly unstable training

Plots get worse

Energy gets better
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Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Gradient Penalty :  
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Trade-Off b/w Distributions and Total Energy:
How to get the best of both??
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“Train the Generator against a Critic of each type!”  
-Gilles Louppe (ATLAS ACE), at ATLAS ML Workshop 2018
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13

New GAN Architecture
2 Critics 

Deeper Generator needed 

Trainable Swish activation for Generator  

Swish activation inspired from 
Giles Strong’s presentation also at AML Workshop 2018

Swish(x)=x⋅sigmoid(βx)

Input features = 1 + Conditional

Input features = 266 + Conditional

Training time: 2.5 Days on 1 GPU for 1.5k Epochs 
Training Size: 44000 events (50% of Dataset) 
CPU = 2 x GPU training time at 52% GPU utilisation

GP = 10

GP = 1e-8

https://arxiv.org/abs/1710.05941
https://indico.cern.ch/event/735932/contributions/3159911/attachments/1735443/2806766/ATLAS-ML_GS.pdf
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New GAN Architecture

Critic 
(GP = 10)

E Critic 
(GP = 1e-8)

Gen

Σ

GP: Two Sided Gradient Penalty

Gen Loss Ratio 
Critic : ECritic = 1 : 1e-6



15

Generator

Critic

E Critic

D
en

se
42

8
L
ea
ky
R
eL
U

D
en

se
12

8
L
ea
ky
R
eL
U

+7
Layers

D
en

se
L
1
re
g.
,
26

6
S
ig
m
oi
d

Particle energy
Calo. config.
Impact point.

Latent space z

D
en

se
1

L
inear

D
en

se
128

L
eakyR

eL
U

D
en

se
128

L
eakyR

eL
U

D
en

se
128

L
eakyR

eL
U

D
en

se
1

L
inear

D
en

se
128

L
eakyR

eL
U

D
en

se
128

L
eakyR

eL
U

D
en

se
128

L
eakyR

eL
U

⌃

Geant4
simulation

Generated
shower

Critic
output

E Critic
output

1

Generator

Critic

E Critic

D
en

se
42

8
L
ea
ky
R
eL
U

D
en

se
12

8
L
ea
ky
R
eL
U

+7
Layers

D
en

se
L
1
re
g.
,
26

6
S
ig
m
oi
d

Particle energy
Calo. config.
Impact point.

Latent space z

D
en

se
1

L
inear

D
en

se
128

L
eakyR

eL
U

D
en

se
128

L
eakyR

eL
U

D
en

se
128

L
eakyR

eL
U

D
en

se
1

L
inear

D
en

se
128

L
eakyR

eL
U

D
en

se
128

L
eakyR

eL
U

D
en

se
128

L
eakyR

eL
U

⌃

Geant4
simulation

Generated
shower

Critic
output

E Critic
output

1

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Hyperparameter Values
Hidden layers 1, 3, 5, 10
Units per layer 64, 128, 512, 1024

Activation func.
SELU [30] + Sigmoid, LeakyReLU [31] + {Sigmoid, ReLU [22],

Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}

Activity L1_REG_WEIGHT (Gen.) 0, 10
-5, 10-2

Kernel init. glorot_uniform [33], lecun_normal [47]
Gradient penalty one-sided, two-sided

Gradient penalty weight 0, 10, 20
Training ratio 20, 10, 5, 3, 1

Learning rate
5 ⇥ 10

-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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Gradient penalty weight 0, 10, 20
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Learning rate
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-5, 5 ⇥ 10-6, 1 ⇥ 10-6 (training ratio 5)
5 ⇥ 10-5, 5 ⇥ 10-6, 1 ⇥ 10-5, 1 ⇥ 10-7 (training ratio 3)
1 ⇥ 10-6 (training ratio 1)

Mini-batch size 64, 1024
Preprocessing (all norm. to E�) log10 Ecell, log10(Ecell ⇥ 1010), Ecell

Conditioning {E�, log10E�} + multi-hot encoding of cell alignments

Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the GAN for simulating
calorimeter showers for photons. The optimal parameter is typeset in bold font. In addition to the architectures
summarized in the table, generators and discriminators with di�ering number of hidden layers and units per layer
were tested.

employing a two-sided gradient penalty [45] for gradients greater than one. The loss of the discriminator
then reads

LGAN = E
x̃⇠pgen

[D(x̃)] � E
x⇠pGeant4

[D(x)] + � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2]. (6)

The term E
x̃⇠pgen

[D(x̃)] represents the discriminator’s ability to correctly identify synthesized showers,

while the term E
x⇠pGeant4

[D(x)] represents the discriminator’s ability to correctly identify showers from

Geant4. The last term in the loss function, � E
x̂⇠px̂

[(| |�x̂D(x̂)| |2 � 1)2], is the two-sided gradient penalty,

where x̂ is a random point on the straight line connecting a point from the real distribution pGeant4
and generated distribution pgen. The algorithm is further extended to estimate conditional probabilities,
leaving the evaluation of the gradient penalty over the showers unchanged. The model is implemented in
Keras 2.0.8 [26] using TensorFlow 1.3.0 [27] as the backend.

An L1 activity regularizer4 is applied to the final layer of the generator to encourage the generation of
sparse energy deposits. The training results of the GAN vary depending on the initial random number
chosen to seed the optimization. Hence, when performing an optimization of the hyperparameters of
the model, four GANs are trained with di�erent random number seeds and their average performance is
compared to avoid picking up random fluctuations. As an example, Fig. 5 shows the average performance
of various activation functions of the output layer in the generator. Both sigmoid and normal activation

4 The rectilinear distance between two points, also called L1 norm, is defined as the sum of the absolute di�erences of their
Cartesian coordinates.
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They are not equivalent, need to tune 
hyper parameters differently

Gradient Penalty on 1 input vs 266 inputs

Input features = 1 + Conditional

= Lambda(sumFunc)(m_input_image)

Careful: Sum Inside or Outside the Network?
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
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GAN: Improved Energy Resolution
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Other plots also very good

GAN still about 15% too large at worst case but not fine tuned

Reference

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/
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5D latent space 
variable 

distributions
[From Model 2] 

● IAF transformations make the latent 
space distributions more Gaussian 
like.  

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/

VAE Latent Space

17

24

5D latent space 
variable 

distributions
[From Model 1] 

● Latent space distributions are not 
well modelled by Gaussians 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/
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5D latent space 
variable 

distributions
[From Model 1] 

● Latent space distributions are not 
well modelled by Gaussians 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/

5D Latent 
Space don’t 

look Gaussian
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5D latent space 
variable 

distributions
[From Model 2] 

● IAF transformations make the latent 
space distributions more Gaussian 
like.  

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-003/

Inverse Autoregressive transformations

a type of Normalizing Flow to make the 
latent space more Gaussian

When we use the Decoder as a generator, it will 
be more correct to sample from a Gaussian 
distribution, impact on physics under study

• Input : a variable with some specified ordering 
(multidimensional tensor ) 

• Output : (μ,σ) for each element of the input 
variable conditioned on the previous elements.
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Integration of DNN into ATLAS (C++) Software

• Added Swish activation to Light Weight Trained Neural Nnetwork package (Thanks Dan Guest!) 
• Find cell closest to extrapolated position of particle in entrance of Middle Layer (called “Impact Cell”), it’s η, φ 
• Build 266 cells around it, order in CaloLayer, η, φ increasing (mirror η on left half) 
• Mimic preprocessing of GAN 
• Generate energy with DNN in LWTNN 
• Mimic post-processing of GAN, and fill energy into CaloCells 
• Validation comparisons of DNN with G4, FCS using standard EGamma definitions (ATLAS internal) 

• Only photons in the barrel 

Resource utilisation: 
• DNNCaloGAN ~ same speed as FastCaloSimV2 

• LWTNN takes <1 ms per shower 
• DNNCaloGAN VmPeak also small, not a concern

https://github.com/lwtnn/lwtnn
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CaloGAN

The CaloGAN architecture (see conditional version). Now with 
GANCaloSim, a simpler architecture (Dense layers, 266 cells 

in 1 vector as input) achieves the various complicated 
conditionings on physics and calorimeter geometry (although 

only photons) 
Lots of room to scale up architecture with Distributed Deep 

Learning

5

FIG. 4: Composite Generator, illustrating three stream with attentional layer-to-layer dependence.

FIG. 5: Composite Discriminator, depicting additional domain specific expressions included in the final feature space.
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FIG. 4: Composite Generator, illustrating three stream with attentional layer-to-layer dependence.

FIG. 5: Composite Discriminator, depicting additional domain specific expressions included in the final feature space.

image is critical, and when the system needs to be end-to-end di↵erentiable, as opposed to requiring
hard attention. Examples of such applications, in addition to the field of High Energy Physics, could
include medical imaging, geological data, electron microscopy, etc. The characteristics of a LAGAN
can be summarized as follows:

• Locally Connected Layers - or any attentional component where we can attend to location
specific features - to be used in the generator and the discriminator

• Rectified Linear Units in the last layer to induce sparsity

• Batch normalization, as also recommended in [7], to help with weight initialization and gra-
dient stability

• Minibatch discrimination[4], which experimentally was found to be crucial in modeling both
the high dynamic range and the high levels of sparsity

4.1 Architecture Details, Implementation, and Training

Figure 4: LAGAN architecture

A diagram of the architecture is available in Fig. 4.
We utilize low-dimensional vectors z 2 R200 as our latent space, where, z ⇠ N (0, I), with final

generated outputs occupying R25⇥25
�0 .

– 6 –

Figure 4. Interpolation across physical range of x0 as a conditioning latent factor for e+ showers.
Note in the ATLAS coordinate system, x represents the vertical direction in this dataset. Each
point in the interpolation is an average of 10 showers, with each point along the traversal build
from an identical latent prior z.

Figure 5. Interpolation across physical range of ✓ as a conditioning latent factor for e+
showers, with ✓ increasing from left to right. Each point in the interpolation is an average
of 10 showers subtracted from the middle point along the interpolation path, with each point
along the traversal build from an identical latent prior z.

controllability of generation procedures, but much future work remains. In particular, a thorough
investigation around dynamics between the attribute estimation portion of the network, ⌅, and
the overall training objective should be pursued, particularly as it relates to the final fidelity of
the attribute estimates. In addition, future work should examine newer GAN formulations (as
outlined in Sec. 3) and their ability to improve image quality.
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the attribute estimates. In addition, future work should examine newer GAN formulations (as
outlined in Sec. 3) and their ability to improve image quality.
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[10] Paganini M, de Oliveira L and Nachman B 2017 (Preprint 1705.02355)

1712.10321

1711.08813

https://arxiv.org/pdf/1712.10321.pdf
https://arxiv.org/pdf/1711.08813.pdf
https://arxiv.org/pdf/1712.10321.pdf
https://arxiv.org/pdf/1711.08813.pdf


20

Conclusion

• We have our first working Generative Network in ATLAS Software for our irregular shaped ATLAS 
Calorimeter (only within barrel for now) ! 

• Just a flag at run time allows to switch out one trained generative model for another 
• Smart detector specific conditioning, preprocessing essential for good results 
• No plot that GAN is unable to learn at all, now also getting the energy resolution correct 
• GAN interpolates on untrained parameter space (don’t need to train on 25GeV to produce 25GeV !) 
• Comparisons being made on physics quantities with the in-development FastCaloSim V2 using 

established, time tested validation framework 
• Many ideas to further improve performance: Look at plots at fixed energy points,                        

Improve Strip images (Additional Critic/Grad Penalty/ Convolutions …) 
• Elaborate training (multiple Critics, Convolutions, DDL) ⇨ simple application (dense Generative 

network with Light Weight Trained Neural Network package in ATLAS Software) 

• Future: More granular level data, Larger range in η, Transfer Learning from LHC data … 

https://github.com/lwtnn/lwtnn
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Backup



http://inspirehep.net/record/1467455/plots

The Calorimeter
2-D Axis: φ vs η

Particle goes through 4 layers in this order: 

0. Pre-Sampler : Some energy deposit 

1. Strips: Very granular in η; more energy deposit 

2. Middle: Thickest layer, maximum energy deposit 

3. Back: Little Energy deposits 

Back (L3)

Middle (L2)
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Pre-Sampler (L0)
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Due to misalignment of the two halves of the 
detector, cells are not perfectly well aligned.  

Different widths of cells further complicate the 
alignment between cells of different layers 

Cells not granular enough to see intricate details of 
shower pattern

http://cdsweb.cern.ch/record/1095927

http://inspirehep.net/record/1467455/plots


Backpropagate through Sum?
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When you train the Generator When you train the E Critic

Yes, gradients useful for Generator

No, we don’t want to apply gradient 
penalty to each cell via the Sum function  

Treat Sum as independent input feature, 
not as a sum of the other 266 features
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