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Generative Models for EM Shower Simulation A=l

CALOGAN: Simulating 3D High Energy Particle Showers in Multi-Layer
Electromagnetic Calorimeters with (Generative Adversarial Networks

1/712.10321
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that it is possible to simulate EM showers for

ke AT

_AS using GANs

* Since then you've seen many GANSs for particle physics

* \WWhat's so special about these Generative Models (GAN, VAE)

oresented in this talk”


https://arxiv.org/pdf/1712.10321.pdf
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CALOGAN: Simulating 3D High Energy Particle Showers in Multi-Layer The simulation principle and performance of the ATLAS fast calorimeter
Electromagnetic Calorimeters with (Generative Adversarial Networks simulation FastCaloSim

The ATLAS Collaboration

CaloGAN Paganini et al.

7 Conclusion

The fast calorimeter simulation FastCaloSim has been developed in order to reduce the simulation time in
the ATLAS calorimeter system from several minutes to a few seconds per event, using a parametrization
model for the longitudinal and lateral shower development of photons, electrons and charged pions. The

G4 takes ~10 seconds per shower for a 65 GeV. ATL-PHYS-PUB-2010-013
® . . ZA | 18 October 2010
|<z single photon shower (more for higher energy)
" Too slow!
' ' ' ' |
ATL - SOFT-PUB-2018.002 * ATLAS already using tast simulation techniques for years!
10th July 2018 = = * Trade-off between slow accurate G4 and fast less accurate
The new Fast Calorimeter Simulation in ATLAS .
FastCaloSim V1
The ATLAS Collaboration _ : : : :
 New FastCaloSim V2 using some ML techniques already in

during the simulation jobs. A prototype is being tested and validated, and it has shown adva qced State Of development

significant improvements in the modelling of cluster-level variables in electromagnetic and

hadronic showers.


https://arxiv.org/pdf/1712.10321.pdf
https://cds.cern.ch/record/1300517/files/ATL-PHYS-PUB-2010-013.pdf
http://cdsweb.cern.ch/record/2630434/files/ATL-SOFT-PUB-2018-002.pdf

First efforts to simulate the real, present
day, irregular, coarse granularity ATLAS
Calorimeter with Generative Models

(Only small eta region in barrel for photons right now)

Human designed parameterisation techniques being developed for many years -> A high
benchmark against which to compare GAN / VAE performance

Validation cross-check frameworks already in place for FastCaloSim including variables
defined by the EGamma group: same level of scrutiny for all fast simulation approaches.

Need to get all distributions right simultaneously, average distributions might look right
but must verify also the distributions per energy point / section of the calorimeter

Still have to parameterise
'or n slices, energies,
N ...

separately

interpolatio

strong correlation
between layers!

additional PCA
for further

aaaaaa




Introduction (Finally)

s it possible to one day...7 :

Simulate showers 100-1000x faster than Geant4

L ess human time intensive, higher accuracy than current fast

simulation methods

Have it run inside At
resource hungry tha

nena (ATLAS C++ software) and be less

N current fast simulation methods

Geant4 requires significant resources with ~75% spent in shower
simulation i.e. Calorimeter simulation

Imperative to develop fast shower simulations compared to Geant4
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VAE

GAN

PubNote: VAE and GAN =r
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Training dataset:
« Single photon samples from
Geant4
- 88000 events
* 9 energy points : {1, 2, 4, 8, 16,

32, 65, 131, 262} GeV
+ 0.20<Inl <0.25
4 electromagnetic calorimeter

layers

Data preprocessing
* Negative energies setto 0
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https://cds.cern.ch/record/2630433/files/ATL-SOFT-PU 84201 8-001.pdf R /

i ﬂ] (WGAN-GP, Improved WGAN-GP nightmare on Keras!)



https://cds.cern.ch/record/2630433/files/ATL-SOFT-PUB-2018-001.pdf
https://arxiv.org/abs/1704.00028

From summer PubNote 2018
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https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf

From summer PubNote 2018
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https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf

L'\j'é1_3—y2020<lnl<025 VAE
B /”—\;
& 2/nolf 400 (VAE) “+ GAN
1oL X /ndf =130 (GAN) B
1.1H —
1 in
Lol +o +_+ U " S
oot W T -
0.8 _
+ 1.05 ——
)
A8
£ 10 %
)
0.95O ' '2.5

2018 Results(3/3) =

ATLAS Simulation Preliminary ‘ N oty it

Iog 10Etruth [GeV]

&, other distributions not so bad
but for total energy...

GAN gets the means but not the
widths of the energies

Critic can’'t see the difference in
real and fake images.

Tried training on single high energy point,
Minibatch discrimination, various other tricks. No result.
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https://cds.cern.ch/record/2621447/files/ATL-COM-SOFT-2018-014.pdf

Trade-Oftf b/w Distributions and Total Energy L

Gradient Penalty :
Gradient Penalty : 1e-13
10

And highly unstable training

Energy gets better

Plots get worse
GAN Critic
GAN Ciritic

Loan = E [D(®)] - E [D)]|[+ A E [([|A+D(X)|]2 — 1)%]

XNpgen prGeant4 .X"ij(‘;




Trade-Off b/w Distributions and Total Energy:
How to get the best of both??

“Train the Generator against a Critic of each type!”
-Gilles Louppe (ATLAS ACE), at ATLAS ML Workshop 2018

12
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New GAN Architecture

2 Critics

Deeper Generator needed

Trainable Swish activation for Generator

raining time: 2.5 Days on 1 GPU for 1.5k Epochs
ining Size: 44000 events (50% of Dataset)
J = 2 x GPU training time at 52% GPU utilisation

Swish(x)=x-s1igmoid(fx)

Swish activation inspired from

Giles Strong’s presentation also at AML Workshop 2018
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https://arxiv.org/abs/1710.05941
https://indico.cern.ch/event/735932/contributions/3159911/attachments/1735443/2806766/ATLAS-ML_GS.pdf
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E Critic
output

Caretul: Sum Inside or Outside the Network? =i
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7 GAN

Other plots also very good
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GAN still about 15% too large at worst case but not fine tuned
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/
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Inverse Autoregressive transformations

a type of Normalizing Flow to make the
latent space more Gaussian

When we use the Decoder as a generator, it will
be more correct to sample from a Gaussian
distribution, impact on physics under study
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.=y Integration of DNN into ATLAS (C++) Software M N gﬁ%g I “

/  Added Swish activation to Light Weight Trained Neural Nnetwork package (Thanks Dan Guest!)
 Find cell closest to extrapolated position of particle in entrance of Middle Layer (called “Impact Cell”), it's n, ¢
 Build 266 cells around it, order in CalolLayer, n, ® increasing (mirror n on left half)

 Mimic preprocessing of GAN

 Generate energy with DNN in LWTNN

* Mimic post-processing of GAN, and fill energy into CaloCells

* Validation comparisons of DNN with G4, FCS using standard EGamma definitions (ATLAS internal)

* Only photons in the barrel

Resource utilisation:
« DNNCaloGAN ~ same speed as FastCaloSimV2
« LWTNN takes <1 ms per shower

e DNNCaloGAN VmPeak also small, not a concern


https://github.com/lwtnn/lwtnn
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https://arxiv.org/pdf/1712.10321.pdf
https://arxiv.org/pdf/1711.08813.pdf
https://arxiv.org/pdf/1712.10321.pdf
https://arxiv.org/pdf/1711.08813.pdf

We have our first wor

Calorimeter (on

Just a tflag at run time al

ly within

Conclusion =

KIng Generative Network in ATLAS Software for our irregular shaped ATLAS

parrel for now) |

ows to switch out one trained generative model for another

Smart detector specitic conditioning, preprocessing essential for good results

No plot that GAN is unable to learn at all, now also getting the energy resolution correct
GAN interpolates on untrained parameter space (don't need to train on 25GeV to produce 25GeV )
Comparisons being made on physics guantities with the in-development FastCaloSim V2 using

established, tim

Many 1deas

e tested validation framework
to further improve pertormance: Look at plots at fixed energy points,

Improve Strip images (Additional Critic/Grad Penalty/ Convolutions ...)

e Elaborate tr

network with

Future: More granular level data, Larger range in n, Transfer Learning from LHC data ...

aining (multiple Critics, Convolutions, DDL) = simple application (dense Generative
_ight Weight Trained Neural Network package in ATLAS Software)
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https://github.com/lwtnn/lwtnn
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The Calorimeter B

2-D Axis: ¢ vsS n

Particle goes through 4 layers in this order:

0. Pre-Sampler : Some energy deposit

1. Strips: Very granular in n; more energy deposit

NN "f \
2. Middle: Thickest layer, maximum energy deposit Saaa /://V ,\/
3. Back: Little Energy deposits

Due to misalignment of the two halves of the
detector, cells are not perfectly well aligned.

Ditferent widths of cells further complicate the
alignment between cells of ditterent layers

Cells not granular enough to see intricate details of
shower pattern

http://cdsweb.cern.ch/record/1095927
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http://inspirehep.net/record/1467455/plots

Backpropagate through Sum?

~When vou train the Generator When you train the E Critic

No, we don't want to apply gradient
Yes, gradients useful for Generator penalty to each cell via the Sum function
Treat Sum as independent input feature,

not as a sum of the other 266 features

E Critic
output
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