EVENT GENERATION AND STATISTICAL SAMPLING WITH DEEP GENERATIVE MODELS

Sydney Otten (University of Amsterdam and Radboud University)

3rd IML Machine Learning Workshop
CERN, Geneva, 17.04.2019
Event Generation and Statistical Sampling
with Deep Generative Models and a Density Information Buffer

Sydney Otten,1,2 Sascha Caron,1,3 Wieske de Swart,1 Melissa van Beekveld,1 Luc Hendriks,1 Caspar van Leeuwen,4 Damian Podareanu,4 Roberto Ruiz de Austri,5 and Rob Verheyen1

1 Institute for Mathematics, Astro- and Particle Physics IMAPP
 Radboud Universiteit, Nijmegen, The Netherlands
2 GRAPPA, University of Amsterdam, The Netherlands
3 Nikhef, Amsterdam, The Netherlands
4 SURFsara, Amsterdam, The Netherlands
5 Instituto de Fisica Corpuscular, IFIC-UV/CSIC
 University of Valencia, Spain
THE BIG PICTURE
WHAT ARE WE DOING? WHY ARE WE DOING THIS?
YES, WE WANT TO PROVIDE AN ALTERNATIVE TO MC GENERATORS

But this requires Monte Carlo! Once trained, the event generation with our ML model is several orders of magnitude faster.
ALLOW FOR MORE “FREEDOM“ FOR GENERATING EVENTS

By enabling targeted event generation and by being able to interpolate between latent space representations
USE THE EVENT GENERATOR AS AN ANOMALY DETECTOR

Train on standard model data, detect anomalous individual events AND overdensities
WE CAN GENERATE BETTER RANDOM NUMBERS

e.g. to improve rejection efficiency for MC integration
VARIATIONAL AUTOENCODERS

- GANs covered in previous talks
- VAEs consist of two NNs with MSE + KL loss
- We use the Beta-VAE
- In Addition: Density buffer in latent space
- Beta-VAE + Buffer = B-VAE
TWO BODY DECAY
First simple toy model
GANS AND STANDARD VAES DON'T WORK WELL BUT B-VAE DOES
LEPTONIC Z DECAY
EVENTS ARE PRODUCED BACK TO BACK
TTBAR PRODUCTION

With up to four jets + leptons
ALSO WORKS WELL FOR COMPLICATED PROCESSES
WHY ARE GANS INFERIOR?

• Unexpected result, focused on GANs when starting project
• GANs generate much better images
• Here: no image data but 4-vectors
• Reason: the discriminator always predicts real or fake for one event at a time
• Therefore: frequency of occurrence is not taken care of
• Think of a dataset with 80% cats and 20% dogs
• VAEs place all events in latent space, superior performance demonstrated
EXPLORING LATENT SPACE
With a principal component analysis
SAMPLING IN PCA SPACE
ALLOWS US TO STEER EVENT GENERATION!
CONCLUSION

• Basically we can learn any relevant probability distribution from data
• In particular we can learn to generate complicated events with the correct frequency of occurrence
• Has many applications:
 • An 82-dimensional event generator case including many sparse entries worked reasonably well
 • More efficient MC sampling e.g. for integrating matrix elements
 • Learn generator directly from experimental data
 • Create an anomaly detector for new physics
 • Learn the detector response (and its inverse)
 • Applications beyond particle physics
THANK YOU FOR YOUR ATTENTION!