

ATLAS

Fast Deep Learning on FPGAs for the Phase-II LO Muon Barrel Trigger of the ATLAS Experiment

IML2019 April 17th 2019

Luigi Sabetta

Motivations

The ATLAS Level-0 muon trigger will face a complete upgrade HiLumi-LHC

Detector parameters:

- Pile up: $30-40 \rightarrow 200$
- Luminosity: $(2 \rightarrow 7.5) \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Greater muon hit rate in the spectrometer: Up to 600 Hz/cm²

ATLAS improvements: New trigger processor

- New FPGA based system
 - Virtex UltraScale+ XCVU13P
 - Logic cells (K): 3780
 - Memory (Mb): 455
 - GTY Transreceivers (32.75 GB/s): 128
 - I/O Pins: 832

New trigger station

- New RPC layer

Trigger algorithms improvement

- Need to be very fast and flexible

Neural networks→ valid candidate

ATLAS-TDR-026

Luigi Sabetta – IML2019

Resistive Plate Chamber(RPC):

- Fast gas detector
- Trigger sources in ATLAS

Sector:

_

- Divide ATLAS in 2 sides ($z \ge 0$) _
- Divide ϕ coordinate in 8 sectors, each one divided in _ 2 (Small and Large)
- Take all the strips from the obtained sector

Atlas Trigger Requirements

Design Trigger Requirements \rightarrow up to three candidates

Candidate = muon with p_T > threshold, + extimate of the position (η^{muon})

Processing time < 6μs

Standard trigger Algorithm

Standard algorithm:

 Check the presence of coincidences inside windows sequentially opened based over the previous layers's hits

台 Stable and reliable 合 Good performances

The coincidence windows need to be tuned "by hand"

- Windows dimensions depend over the \mathbf{p}_{T} trigger threshold
- Strong dependency over the trigger choices and local detector geometry
- P Assumes pointing tracks
- Decay vertex far from the IP?

Luigi Sabetta – IML2019

ATLAS-TDR-026

From strip map to images

Example of a muon with p_T =19 GeV + noise

Convolutional Neural Networks

Convolutional Neural Network (CNN): Deep Neural networks optimized for image recognition.

Highly effective for problems with rotational or translational symmetries

In this way the number of the parameters can be highly reduced

CNN Floating Point structure

Architecture:

- (Conv2D + Batch Norm. + Max Pooling) x 3
- (Dense) x 2 layers to get to the output

Total number of parameters: 500k

Decaying Learning rate: $10^{-2} \rightarrow 10^{-5}$

Activation= ReLu

BatchNormalization:

- $\epsilon = 10^{-6}$
- Momentum= 0.9

Input DataSet

Sample:

- 1 muon + Background (random hits ~uniformely distributed)
- 2 muons + Background
- 3 muons + Background
- Just noise (10% of the total number of images)

$$\label{eq:pt} \begin{split} 0 < p_T < 20 \; GeV \\ 0 < |\eta| < 1.05 \end{split}$$

Parametrization of full phase-2 events in the ATLAS detector

Grand total of \sim 900k images

CNN FP performances – Physics quantities

Interesting physics quantities are well represented

Events are well classified in $\,n^{muons}$

CNN FP performances- Trigger

CNN

Standard Algorithm

Efficiency curves are comparable to the ones obtained with the standard algorithm

Ternary CNN – implementation

Level-0 trigger sector logic will be implemented in an FPGA

- Standard NNs work with weight described by 32 bit floating Point precison numbers
- FP weights aren't the optimal choice Great logic resources consumption

Ternary CNN:-101Weights =(only two bits)

A Ternary CNN may imply a loss in performances

 Few percentage points in respect to an FP32 NN with the same structure

Smaller size:

- Smaller logic resources consumption
- Up to 16 times smaller

In principle it can be made deeper

More layer recover the loss in precision

Ternary CNN-Performances

Luigi Sabetta – IML2019

p^{ML}(GeV)

MAE=1.9 GeV

Ternary CNN performances – Number of muons

NN on FPGAs – How to Implement

NN on FPGAs – How to Implement

Next Steps

Thank you for the attention