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High granularity detectors and Computer Vision
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•Example: HGCal produces 3D shower 
images 
‣ Space 
‣ Energy (+time) as colour 

•Large number of inputs: 6M channels  

•Tasks: 
‣ Identify showers in noise 
‣ Identify particle type from 

shower shape 

‣ Measure energy 

strong similarity  
to pattern  
recognition/ 
computer vision

}

CMS TDR-17-007

→ Using translation invariance, 
CNNs seem natural choise
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Detectors: General Problem
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• Irregular geometry: physics driven 

• Sparse showers •Uniform, regular pixel size in all 
dimensions

CMS TDR-17-007
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Going beyond CNNs
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• Using graph neural networks for reconstruction 
‣ Invariant w.r.t. order of inputs 
‣ Do not depend on a regular geometry 
‣ In particularly interesting: dynamic graph networks 

learning space transformations  

• Studying approaches for segmentation 
(clustering) 

• Here in a simplified irregular calorimeter 
‣ Full Tungsten, no absorber, directly consider energy 

deposits 
‣ Sensor size and quantity changes with layer and x,y

Jan Kieseler
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Clustering / Segmentation
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•Clustering is more than (just) 
segmentation: need to identify 
fractions rather than classify 
a set of points 
•However, proposal for  

segmentation of point clouds:  
DGCNN [1] similar to our problem 
‣ Irregular points / sensors 
‣ Identifying one shower in presence  

of others 
‣ Proven very powerful 

•DGCNN (a.k.a EdgeConv layers) 
‣ Transform features per vertex 
‣ Calculate L2 distance between vertices with new features 
‣ Select N neighbours and edges  

(just difference between features, absolute coord.) 
‣ Transform edge features 
‣ Select maximum activation of transformed edge features 

as new vertex features (max pool in edges) 
‣ Propagate this information to next layer

[1] arXiv:1801.07829
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EdgeConv in practice
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•DGCNN (a.k.a EdgeConv layers) 
‣ Transform features per vertex 
‣ Calculate L2 distance between vertices with new features 
‣ Select N neighbours and edges  

(just difference between features, absolute coord.) 
‣ Transform edge features 
‣ Select maximum activation of transformed edge features 

as new vertex features (max pool in edges) 

•Many resource intense steps 
‣ Our training/inference resources are very limited 
‣ We also need a fast network for triggering applications  
‣ Our inputs are more complex: coordinate features and also measured features  

(e.g. energy in a sensor) 

•Build new network layers: GravNet and GarNet  
‣ Allow for learnable space representation 
‣ Split coordinate space and ‘other feature’ space 
‣ Aggregate features from vertices 
‣ Evaluate distances in coordinate space and apply as  

weights to features when aggregating 
‣ Creates gradient w.r.t. distances

‣ B x V x F → B x V x F’ (F’ = 64) 
‣ B x V x V x F’ → B x V x V x 1 
‣ B x V x N x F’ 

‣ (B x V x N x F’ → B x V x N x F’’ )t 
‣ B x V x N x F’’ → B x V  x F’’
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Technical Implementation
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•GravNet 
‣ Project to coordinate and feature space (a) 
‣ Select N neighbours using coordinate space 

(b) 
‣ Scale neighbour features with distance (d) 
‣ (small distance = large weight) 

‣ Select maximum and mean of scaled 
features (d) 
‣ Improves convergence significantly 

‣ Mix with original vertex information (e) 

•GarNet: 
‣ Project to coordinate and feature space (a) 
‣ Interpret  coordinates as distances to 

aggregators (c) 
‣ Use distance weights to aggregate mean 

and max (d) 
‣ Expand back to all vertices using same 

distance weights (d) 
‣ Mix with original vertex information (e)
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Models
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• Similar total depth (counting all trainable transformations) 
•All models approx 100k free parameters
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Dataset and Training
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• Segmentation 
‣ 16M events 
‣ Charged pions (E = 10 - 100 GeV) 
‣ Most complex showers 

‣ Shot at x,y = [-5,5] cm (random), z = -5cm 
‣ 2 particles per event 

•Calorimeter 
‣ Tungsten 
‣ 30 cm x 30 cm x 2m  
‣ In total 2102 sensors 

•Training 
‣ Using exponentially decaying learning rates starting around 0.0003 
‣ No dropout 
‣ With about 100k parameters no overtraining 

‣ Batch normalisation  
‣ Minimize: 



•Use distances to visualise perception of the DNN 
‣ Here GravNet 

• Showers are successfully reconstructed 
‣ Connecting tracks are identified 
‣ EM/hadronic components are linked 
‣ Fractions are separated

Jan Kieseler

Qualitative Performance

 10

Truth - for reference

Prediction
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Quantitative Results
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• Focus on the overlap region, only  (20-80 % overlap) 
•Define energy response 

•The graph network based approaches outperform the CNN approach 
‣ More natural presentation of the detector 

•The GravNet model outperforms all approaches 

CNN approach  
for comparison



Jan Kieseler

Resource Requirements
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•GravNet better performing and lower resource requirements than proposal from 
literature (DGCNN) 
•GarNet very fast, developed with trigger application in mind 
‣ CNNs profit from highly optimised code and show worse performance and adaptation power to 

irregular geometries 
‣ Room for more improvement, e.g. taking more advantage of sparsity
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Summary
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•Presented graph neural network based approaches for clustering / shower 
segmentation  
•Two new graph neural network layer  

proposals 
‣ Based on distance weighting in coordinate space 
‣ Reduced resource requirements 
‣ Better performance than suggestions 

in the literature 

•Not limited to clustering 
‣ Currently studying tracking applications 
‣ Could be interesting for jet tagging/lepton isolation 

•Tensorflow & Keras implementation  
https://github.com/jkiesele/caloGraphNN 
‣ Individual ready-to-use layers and full models

Prediction

S.R. Qasim, JK, Y. Iiyama, M. Pierini 
arXiv:1902.07987, submitted to EPJC

https://github.com/jkiesele/caloGraphNN

