# (In)dependence of various LFV observables in the non-minimal SUSY

#### Wojciech Kotlarski

Technische Universität Dresden

Workshop on Higgs and Flavour Physics Lisbon, Portugal January 14, 2019

in collaboration with D. Stöckinger and H. Stöckinger-Kim

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global  $U_R(1)$  symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged  $Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$
- superpotential example

$$\mathcal{L} \ni \int d^2\theta \, W$$

Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
  $e^{i\alpha Q_R}$   $e^{i\alpha (Q_R-1)}$   
 $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$ 

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global  $U_R(1)$  symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged  $Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$
- superpotential example

(we want it to be) R-invariant  $\longrightarrow \mathcal{L} \quad \ni \quad \int d^2\theta \quad W$ 

Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
  $e^{i\alpha Q_R}$   $e^{i\alpha (Q_R-1)}$   
 $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$ 

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global  $U_R(1)$  symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged  $Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$



Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
  $e^{i\alpha Q_R}$   $e^{i\alpha (Q_R-1)}$   
 $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$ 

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global  $U_R(1)$  symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged  $Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$



Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R}$$
  $e^{i\alpha Q_R}$   $e^{i\alpha (Q_R-1)}$   
 $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$ 

#### Low-energy R-symmetry realization

- Different possible models that one can construct
- \* "Natural" choice  $e^{i\alpha Q_R}$   $e^{i\alpha Q_R}$   $e^{i\alpha (Q_R-1)}$   $\Phi = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$ leptons and quarks  $Q_R = 1$   $Q_R = 1$   $Q_R = 0$ Higgs  $Q_R = 0$   $Q_R = 0$   $Q_R = -1$ 
  - **G**ood: no barion and lepton number violating terms
  - Bad: No Majorana masses for higgsinos and gauginos

| : <u>Dirac mas</u> | <u>ses</u>                               |                                                                           |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| netric Super       | symn                                     | netric Star                                                               | ndardmod                                                                                                                                                                                                                                                                                                   | el (MRS                                                                                                                                                                                                                                                                                                                                                                        | SM)                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                          | $SU(3)_C$                                                                 | $SU(2)_L$                                                                                                                                                                                                                                                                                                  | $U(1)_Y$                                                                                                                                                                                                                                                                                                                                                                       | U(1)                                                                                                                                                                                                                                                                                                                                                                                          |
| Singlet            | Ŝ                                        | 1                                                                         | 1                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                               |
| Triplet            | Ť                                        | 1                                                                         | 3                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                               |
| Octet              | Ô                                        | 8                                                                         | 1                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                               |
| R-Higgses          | Â <sub>u</sub>                           | 1                                                                         | 2                                                                                                                                                                                                                                                                                                          | -1/2                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Â <sub>d</sub>                           | 1                                                                         | 2                                                                                                                                                                                                                                                                                                          | 1/2                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Singlet<br>Triplet<br>Octet<br>R-Higgses | Singlet Ŝ<br>Triplet Ĵ<br>Octet Ô<br>R-Higgses $\hat{R}_u$<br>$\hat{R}_d$ | $\begin{array}{c c} \hline \text{Dirac masses}\\ \hline \text{etric Supersymmetric Star}\\ \hline \\ \hline \\ Singlet & \hat{S} & 1\\ \hline \\ \text{Triplet} & \hat{T} & 1\\ \hline \\ \text{Octet} & \hat{O} & 8\\ \hline \\ \text{R-Higgses} & \hat{R}_u & 1\\ \hline \\ & \hat{R}_d & 1 \end{array}$ | $\begin{array}{c c} \hline \text{Dirac masses}\\ \hline \text{etric Supersymmetric Standardmod}\\ \hline SU(3)_C & SU(2)_L\\ \hline \\ \hline \\ \text{Singlet} & \hat{S} & 1 & 1\\ \hline \\ \text{Triplet} & \hat{T} & 1 & 3\\ \hline \\ \\ \text{Octet} & \hat{O} & 8 & 1\\ \hline \\ \\ \text{R-Higgses} & \hat{R}_u & 1 & 2\\ \hline \\ \\ \hat{R}_d & 1 & 2 \end{array}$ | $\begin{array}{c c} \hline \text{Dirac masses}\\ \hline \text{etric Supersymmetric Standardmodel (MRS)}\\ \hline & SU(3)_C & SU(2)_L & U(1)_Y\\ \hline & \text{Singlet} & \hat{S} & 1 & 1 & 0\\ \hline & \text{Triplet} & \hat{T} & 1 & 3 & 0\\ \hline & \text{Octet} & \hat{O} & 8 & 1 & 0\\ \hline & \text{R-Higgses} & \hat{R}_u & 1 & 2 & -1/2\\ & & \hat{R}_d & 1 & 2 & 1/2 \end{array}$ |

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$

$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$

$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

# MSSM vs. MRSSM

- - soft-SUSY breaking terms
    - $\Box = B_{\mu}$  term
    - □ soft scalar masses
    - Majorana gaugino masses
    - □ A terms

#### superpotencial

$$\begin{split} \mu_d \, \hat{R}_d \, \hat{H}_d \, + \mu_u \, \hat{R}_u \, \hat{H}_u \\ - Y_d \, \hat{d} \, \hat{q} \, \hat{H}_d \, - Y_e \, \hat{e} \, \hat{l} \, \hat{H}_d \, + Y_u \, \hat{u} \, \hat{q} \, \hat{H}_u \\ \Lambda_d \, \hat{R}_d \, \hat{T} \, \hat{H}_d \, + \Lambda_u \, \hat{R}_u \, \hat{T} \, \hat{H}_u \, + \lambda_d \, \hat{S} \, \hat{R}_d \, \hat{H}_d \, + \lambda_u \, \hat{S} \, \hat{R}_u \, \hat{H}_u \end{split}$$

- soft-SUSY breaking terms
  - $\Box$   $B_{\mu}$  -term

- □ soft scalar masses
- Dirac gaugino masses
- no A-terms

One way to fix it: <u>Dirac masses</u> Minimal R-Symmetric Supersymmet

Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) Kribs et.al. arXiv:0712.2039

|                    |           |                | <i>SU</i> (3) <sub>C</sub> | $SU(2)_L$ | $U(1)_Y$ | $U(1)_{R}$ |
|--------------------|-----------|----------------|----------------------------|-----------|----------|------------|
|                    | Singlet   | Ŝ              | 1                          | 1         | 0        | 0          |
| Additional fields: | Triplet   | Ť              | 1                          | 3         | 0        | 0          |
|                    | Octet     | Ô              | 8                          | 1         | 0        | 0          |
|                    | R-Higgses | Â <sub>u</sub> | 1                          | 2         | -1/2     | 2          |
|                    |           | Â <sub>d</sub> | 1                          | 2         | 1/2      | 2          |

Kribs, Popitz, Weiter (2008)

# MSSM vs. MRSSM

- superpotencial  $\mu \hat{H}_{u} \hat{H}_{d} \qquad \bigcirc$   $-Y_{d} \hat{d} \hat{q} \hat{H}_{d} - Y_{e} \hat{e} \hat{l} \hat{H}_{d} + Y_{u} \hat{u} \hat{q} \hat{H}_{u} \bigotimes$ 
  - soft-SUSY breaking terms
    - $\Box \quad B_{\mu}$  term
    - **D** soft scalar masses
    - Majorana gaugino masses

0

□ A - terms

|   | superpotencial                                                                                                                                   |           |                |                            |           |          |            |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|----------------------------|-----------|----------|------------|--|
|   | $ \qquad \qquad$          |           |                |                            |           |          |            |  |
|   | soft-SUSY breaking terms                                                                                                                         |           |                |                            |           |          |            |  |
|   | $\square$ $B_{\mu}$ -term                                                                                                                        |           |                |                            |           |          |            |  |
|   | soft scalar masses                                                                                                                               |           |                |                            |           |          |            |  |
|   | <ul> <li>Dirac gaugino masses</li> </ul>                                                                                                         |           |                |                            |           |          |            |  |
|   | no A-terms                                                                                                                                       |           |                |                            |           |          |            |  |
|   | One way to fix it: <u>Dirac masses</u><br><u>Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM)</u><br><u>Kribs et.al. arXiv:0712.2039</u> |           |                |                            |           |          |            |  |
|   |                                                                                                                                                  |           |                | <i>SU</i> (3) <sub>C</sub> | $SU(2)_L$ | $U(1)_Y$ | $U(1)_{R}$ |  |
|   |                                                                                                                                                  | Singlet   | Ŝ              | 1                          | 1         | 0        | 0          |  |
|   | Additional fields:                                                                                                                               | Triplet   | T<br>Ô         | 1                          | 3         | 0        | 0          |  |
|   |                                                                                                                                                  | R-Higgses | Â.,            | o<br>1                     | 2         | -1/2     | 2          |  |
| • |                                                                                                                                                  |           | Â <sub>d</sub> | 1                          | 2         | 1/2      | 2          |  |

Kribs, Popitz, Weiter (2008)

#### Particle content summary: MSSM vs. MRSSM

#### different number of physical states completely new states **R-Higgs** Higgs charginos **CP-odd** charged charged neutral sgluon **CP-even MSSM** 2 2 0 0 0 1 1 MRSSM 4 3 3 2 + 22 2 1

|       | neutralino | gluino |
|-------|------------|--------|
| MSSM  | 4          | 1      |
| MRSSM | 4          | 1      |

#### **Majorana fermions**

#### **Dirac fermions**

#### Exemplary mass spectrum



5

production

## **Previous and future low energy experiments**

- As the LHC still sees nothing, we look into low energy experiments:
  - prospects for g-2 measurement

**x** prospect for  $\mu \rightarrow e\gamma$ 

current: 4.2×10-13 (MEG)

 $a_{\mu}^{\exp} - a_{\mu}^{\rm SM} = (28.1 \pm 6.3^{\exp} \pm 3.6^{\rm th}) \times 10^{-10} \qquad a_{\mu}^{\exp} - a_{\mu}^{\rm SM} = (??? \pm 1.6^{\exp} \pm 3.4^{\rm th}) \times 10^{-10}$ 

future:  $\approx 4 \times 10^{-14}$ 

prospect for  $\mu \rightarrow e$  conversion

current: 7×10-13 (SINDRUM-II)

future: ≤10-16

#### **Relation between** $(g-2)_{\mu}$ and LFV observables



each observable requires a dedicated experiment

# $(g-2)_{\mu}$ in the MSSM



and similarly for  $\mu \rightarrow e\gamma$  and  $\mu \rightarrow e$  - as long as tan  $\beta$  is not very small all considered observables are dominated by the dipole contributions and therefore strongly correlated  $CR(\mu \rightarrow e) \propto \alpha \cdot BR(\mu \rightarrow e\gamma)$ 

$$\operatorname{CR}(\mu \to e) \le 3 \cdot 10^{-15}$$



# $(g-2)_{\mu}$ in the MRSSM



there is one class of enhanced diagram though





 $\propto m_{\mu}^{2} \tan \beta \mu M_{1}$   $\tilde{B}$   $\tilde{H}_{2}$   $\tilde{H}_{1}^{0}$ 

 $\mu_R$   $ilde{\mu}_R$   $\mu_L$ 

# $(g-2)_{\mu}$ in the MRSSM

It is possible to obtain large contribution to g-2



The price to pay are light EW-inos, in tension with experiment

# Photonic penguin dominance

For  $|\lambda_d| \ge 1$  the dipoles dominate: g-2 scales linearly with  $\lambda_d$ , while  $\mu \rightarrow e\gamma$  and  $\mu \rightarrow e$  quadratically



- For  $|\lambda_d| \ge 1$  the ratio of  $\mu \to e\gamma$  over  $\mu \to e$  is of the order 100, as in the MSSM where  $CR(\mu \to e) \propto \alpha \cdot BR(\mu \to e\gamma)$
- Near  $|\lambda_d| \approx 0$  the ratio is of order 1 or less

 $\frac{br(\mu \to e\gamma)}{CR(\mu \to e, Au)}$  $a_{\mu}$  **vs.** 



- In the region dominated by the dipoles the  $br(\mu \to e\gamma) \sim \sin^2 2\theta \cdot a_{\mu}^2$
- In the MRSSM this is a region of  $|\lambda_d| \ge 1$ , in the MSSM  $\tan \beta \ge 5$

#### 6 distinct regions of parameter space

- At least 2 light masses needed
- 6 distinct parameter regions

BL: líght  $M_B^D$ ,  $m_{\tilde{l}}$ BR: líght  $M_B^D$ ,  $m_{\tilde{e}}$ WL: líght  $M_W^D$ ,  $m_{\tilde{l}}$ 

BHL: líght  $M_B^D$ ,  $\mu_d$ ,  $m_{\tilde{l}}$ BHR: líght  $M_B^D$ ,  $\mu_d$ ,  $m_{\tilde{e}}$ WHL: líght  $M_W^D$ ,  $\mu_d$ ,  $m_{\tilde{l}}$ 

Only red ones exhibit  $\lambda_d$  or  $\Lambda_d$  enhancement

#### Numerical analysis of $\lambda_d$ and $\Lambda_d$ enhancement



# Summary plot



# **Conclusions:**

- Two distinct cases:  $|\lambda_d| \approx 0$ ,  $|\lambda_d| > 0$
- For large  $|\lambda_d|$  observables might get dominated by photon "penguins" and strongly correlated
- Generating sufficient contribution to g-2 through large λ<sub>d</sub> overshots LFV observables (unless one fine-tunes the mixing angle)
- Similar things happen for  $\Lambda_{\rm d}$
- For  $|\lambda_d| \approx 0$  the g-2 and  $\mu \rightarrow e\gamma$  are still correlated but the  $\mu \rightarrow e$  conversion rate can be dominated by so-called charge radius, Z-penguin and box contributions
- It is therefore possible to find a parameter points not excluded by current experimental results, within reach of the next  $\mu \rightarrow e$  conversion (but not  $\mu \rightarrow e\gamma$ ) experiment

# Backup

#### EW sector of the MRSSM (status)

- The SM-like Higgs boson mass in the MRSSM has been calculated including full 1-loop and leading 2-loop corrections<sup>1,2</sup>
- Impact of EWPO was analyzed<sup>1</sup>
- MRSSM can predicts correct dark matter relic density while being in agreement with dark matter direct detection bounds<sup>3</sup>
  - Its EW signatures were checked against available 7 and 8 TeV data<sup>3</sup>

1. P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, JHEP 1412 (2014) 124

 P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Adv. High Energy Phys. 2015 (2015) 760729

**3.** P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, JHEP **1603** (2016) 007



#### 2 component dark matter

- consider scenarios where the lightest particle with R=1 is neutralino or sneutrino with mass  $m_{LSP1}$
- if  $m_{R_1^0} < 2 m_{\text{LSP1}}$ , lightest neutral R-Higgs is also stable
- two SUSY dark matter candidates with relic densities  $\Omega_1$  and  $\Omega_2$ 
  - requirements
  - $\Box \quad \Omega_{total} h^2 \equiv (\Omega_1 + \Omega_2) h^2 \simeq 0.11$
  - $\square$  substantial fraction  $\Omega_2/\Omega_{total}$
- (for now) best points are not collinear friendly:

$$m_{\tilde{\chi}^0_1} = 367 \text{ GeV}$$
  
 $m_{R^0_1} = 571 \text{ GeV}$ 



# Sgluon pair production at 13 TeV LHC

- Analysis of the sgluon pair production with subsequent decay into  $t\bar{t}$  pairs. Recasting ATLAS search in the same-sign lepton channel using 3.2/ fb of integrated luminosity
- Signal simulated at NLO using MadGraph5\_aMC@NLO + FeynRules + NLOCT and matched to parton shower in the MC@NLO scheme
  - Detector response parametrized using Delphes3
- Analysis validated on background processes  $t\bar{t}l^+l^-, t\bar{t}l^\pm\nu$
- Mass of pair produced real spluons decaying with  $BR(O \rightarrow t\bar{t}) = 1$  excluded up to 950 GeV



#### Leading order analysis



LO cross-sections for sparticle production at the LHC at  $\sqrt{s} = 13$ TeV

# **NLO improvements**



reduction of theoretical uncertainty

shift of cross-sections

#### **Comparison with the MSSM**



Two possible definitions of K-factors:

- unsummed over L- and R-squarks
- **\*** summed

#### **Differential distributions**



#### $\mu \rightarrow e\gamma$ in the MRSSM

first analysis performed by Fok and Kribs [Phys. Rev. D 82, 035010 (2010)]

