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Section 1

Introduction
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Motivation
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How complex is this problem?

We take a system that can take two states � and �

� � �

� � �

�

�

� � � �

� � � �

Number of possibilities

Z = 2N
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How bad is exponential scaling?
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Physical example

1023 Number of atoms in 12g of carbon

1080 Number of atoms in the visible universe
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Quantum Mechanics in 2 slides – Slide 1

� � �

� � �

�

�

� � � �

� � � �

Hilbert spaceH vector space of all possible configurations

state |Ψ⟩ vector inH that describes the state of the system

Hamilton operator H Linear operator that describes the energy of

the system

Note on Notation: Bra and Ket vectors

Ψ0

Ψ1

Ψ2

|Ψ⟩ is a column vector
Ψ0 Ψ1 Ψ2

⟨Ψ| is a row vector
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Quantum Mechanics in 2 slides – Slide 2

Schrödinger equation

i d
dt

|Ψ(t)⟩ = H |Ψ(t)⟩

time-independent Schrödinger equation (time-ind. Hamiltonian)

H |Ψ⟩ = E |Ψ⟩

Expectation values

Probability theory

⟨X⟩ = P(X)X

Quantum mechanics

⟨E⟩ = ⟨Ψ|H |Ψ⟩
⟨Ψ|Ψ⟩
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Expressing spins with matrices

Definitions

∣�⟩ = (1

0
)

∣�⟩ = (0

1
)

Sz = 1

2
(1 0

0 −1
)

Calculating with spins

Sz ∣�⟩ = 1

2
(1 0

0 −1
)(1

0
)

= 1

2
∣�⟩
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Combining multiple spins

Consider a system consisting of two spins that can two values ( � and �)

Hilbert spaceH

H = span {∣�1⟩ ∣�2⟩ , ∣�1⟩ ∣�2⟩ , ∣�1⟩ ∣�2⟩ , ∣�1⟩ ∣�2⟩}

Spins on different sites are combined by tensor products

∣�1⟩ ∣�2⟩ = (0

1
) ⊗ (0

1
) =

⎛⎜⎜⎜⎜⎜
⎝

0

0

0

1

⎞⎟⎟⎟⎟⎟
⎠

∣�1⟩ ∣�2⟩ = (1

0
) ⊗ (0

1
) =

⎛⎜⎜⎜⎜⎜
⎝

0

1

0

0

⎞⎟⎟⎟⎟⎟
⎠

∣�1⟩ ∣�2⟩ = (0

1
) ⊗ (1

0
) =

⎛⎜⎜⎜⎜⎜
⎝

0

0

1

0

⎞⎟⎟⎟⎟⎟
⎠

∣�1⟩ ∣�2⟩ = (1

0
) ⊗ (1

0
) =

⎛⎜⎜⎜⎜⎜
⎝

1

0

0

0

⎞⎟⎟⎟⎟⎟
⎠

Slide 10 Tensor Networks | March 4 – 7, 2019 | Patrick Emonts



Letting spins interact

Interaction of two spins

H = −J (Sz1 ⊗ Sz2)

Matrix representation

H = −J(1

2
(1 0

0 −1
)) ⊗ (1

2
(1 0

0 −1
))

= − J

4
(1 0

0 −1
) ⊗ (1 0

0 −1
) = − J

4

⎛⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟
⎠
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Calculating an expectation value

Preparation of a state

|Ψ⟩ = √0.5 ∣�1⟩ ∣�2⟩ + √0.5 ∣�1⟩ ∣�2⟩

= √0.5 ∣�1�2⟩ + √0.5 ∣�1�2⟩

= √0.5 ∣��⟩ + √0.5 ∣��⟩

=
⎛⎜⎜⎜⎜⎜⎜
⎝

0

√0.5
√0.5
0

⎞⎟⎟⎟⎟⎟⎟
⎠

Expectation value

⟨H⟩ = ⟨Ψ|H |Ψ⟩ / ⟨Ψ|Ψ⟩
= ⟨Ψ|H |Ψ⟩

= − J

4
( 0 √0.5 √0.5 0 )(

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)⎛⎜⎜
⎝

0

√0.5
√0.5
0

⎞⎟⎟
⎠

= J

4
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Summary – Introduction

Computation

Computational complexity of many-body systems scales exponentially with the system size

We cannot solve those systems exactly and have to use approximate methods

Physics

Quantum mechanical systems evolve according to the Schrödinger equation

We are interested in the ground-state |Ψ⟩ and expectation values ⟨E⟩ = ⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

Slide 13 Tensor Networks | March 4 – 7, 2019 | Patrick Emonts



Section 2

Matrix Product States
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Tensor Networks

Idea

Use an Ansatz with polynomially many parameters although the Hilbert space has exponentially

many states

Hilbert space

TN

We explore only a small part of the Hilbert space
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What is a tensor network?
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Pictorial representation

vector

matrix

tensor

The number of legs determines the number of indices of the

object

A connection ⇔ Contraction of indices
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Pictorial representation as Arrays

0

1

2

3

4

i
=

i j

=

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(1 ,0)

(1 ,1)

(1 ,2)

(1 ,3)

(1 ,4)

(2 ,0)

(2 ,1)

(2 ,2)

(2 ,3)

(2 ,4)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(4 ,0)

(4 ,1)

(4 ,2)

(4 ,3)

(4 ,4)

(3,0,2)

(2,0,2)

(1,0,2)

(0,0,2)

(3,1,2)

(2,1,2)

(1,1,2)

(0,1,2)

(3,2,2)

(2,2,2)

(1,2,2)

(0,2,2)

(3,3,2)

(2,3,2)

(1,3,2)

(0,3,2)

(3,0,1)

(2,0,1)

(1,0,1)

(0,0,1)

(3,1,1)

(2,1,1)

(1,1,1)

(0,1,1)

(3,2,1)

(2,2,1)

(1,2,1)

(0,2,1)

(3,3,1)

(2,3,1)

(1,3,1)

(0,3,1)

(3,0,0)

(2,0,0)

(1,0,0)

(0,0,0)

(3,1,0)

(2,1,0)

(1,1,0)

(0,1,0)

(3,2,0)

(2,2,0)

(1,2,0)

(0,2,0)

(3,3,0)

(2,3,0)

(1,3,0)

(0,3,0)

i j

k

=
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Calculations with pictures

Matrix-Vector Multiplication

vi = ∑
i,j Aijbj

bA=v
i ji

Matrix-Matrix Multiplication

Ckl = ∑
i,k,l AkiBil

BA=C
i lklk

Slide 18 Tensor Networks | March 4 – 7, 2019 | Patrick Emonts



Calculations with pictures – Quiz

BA

=c

j

i
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Calculations with pictures – Quiz

BA=c
j

i

Trace

c = ∑
i,j

AijBji

= Tr[AB]
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Tensor manipulations – Grouping

Tensor to Matrix

Ai,j,k = Ai,(jk)

= Ai,m

Pictorial language

j

k
i j

k

= i = i m

(2,0,1)

(1,0,1)

(0,0,1)

(2,1,1)

(1,1,1)

(0,1,1)

(2,2,1)

(1,2,1)

(0,2,1)

(2,0,0)

(1,0,0)

(0,0,0)

(2,1,0)

(1,1,0)

(0,1,0)

(2,2,0)

(1,2,0)

(0,2,0)i j

k

=

(2,0)

(1,0)

(0,0)

(2,1)

(1,1)

(0,1)

(2,2)

(1,2)

(0,2)

(2,3)

(1,3)

(0,3)

(2,4)

(1,4)

(0,4)

(2,5)

(1,5)

(0,5)

i (jk) =
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Tensor manipulations – Splitting

Splitting of tensor

A = U ⋅ S ⋅ V†

i j

k l

= (ik) (jl)

= (ik) (jl) = i

k
l

j
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Singular Value Decomposition

M = U S V†

Singular Value Decomposition

M = U ⋅ S ⋅ V†,

M arbitrary mxn matrix

U unitary mxm matrix

S diagonal mxn matrix

V unitary nxn matrix
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SVD – Truncation

Full SVD

M = U S V†

Truncated SVD

M = U S V†

� Note �

The shape of M does not change since we are only manipulating an index which we contract.
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SVD – Example

Original Image Truncated Image (20 SV)
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Back to formulas: What is a Tensor Network?

A general quantum mechanical state

|Ψ⟩ = ∑
σ1…σn

cσ1,σ2…σN
∣σ1σ2 … σn⟩

Example: |Ψ⟩ = √0.5 ∣�⟩ ∣�⟩ + √0.5 ∣�⟩ ∣�⟩

H = span{∣�1⟩ ∣�2⟩ ,
∣�1⟩ ∣�2⟩ ,
∣�1⟩ ∣�2⟩ ,
∣�1⟩ ∣�2⟩}

c�1,�2
= 0

c�1,�2
= √0.5

c�1,�2
= √0.5

c�1,�2
= 0
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Back to formulas: What is a Tensor Network?

A general quantum mechanical state

|Ψ⟩ = ∑
σ1…σn

cσ1,σ2…σN
∣σ1σ2 … σn⟩

Problem

The coefficients depend on the configuration of all spins. Thus, there are exponentially many

coefficients.

A fancy way to write a quantum mechanical state

|Ψ⟩ = ∑
σ1…σn

∑
a1,…,an−1

A
σ1
a1
A
σ2
a1,a2 ⋯A

σn−1
an−2,an−1

A
σn
an−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

cσ1,σ2…σN

∣σ1σ2 … σn⟩
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Tensor Networks – Thinking about Indices

A Tensor Network State

|Ψ⟩ = ∑
σ1…σn

∑
a1,…,an−1

A
σ1
a1
A
σ2
a1,a2 ⋯A

σn−1
an−2,an−1

A
σn
an−1

∣σ1σ2 … σn⟩

Dimensions of object A

Aσ
aj,aj+1

σ: physical index: (�, �)

a: virtual index

Dimension of physical index

d (∼ 10)
Dimension of virtual index

D (∼ 100)
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Matrix Product States

A Tensor Network State

|Ψ⟩ = ∑
σ1…σn

∑
a1,…,an−1

A
σ1
a1
A
σ2
a1,a2 ⋯A

σn−1
an−2,an−1

A
σn
an−1

∣σ1σ2 … σn⟩

A
σ1
1 A

σ2
2 A

σ3
3 A

σ4
4

a1 a2 a3

σ1 σ2 σ3 σ4
Dimension: 1D

Typical quantities

correlations

expectation values of observables
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Matrix Product States – How to get the Tensors?

A general quantum mechanical state

|Ψ⟩ = ∑
σ1…σn

cσ1,σ2…σN
∣σ1σ2 … σn⟩

=cσ1,σ2,...,σN

Matrix Product state

|Ψ⟩ = ∑
σ1…σn

∑
a1,…,an−1

A
σ1
a1
A
σ2
a1,a2 ⋯A

σn−1
an−2,an−1

A
σn
an−1

∣σ1σ2 … σn⟩
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Matrix Product States – Bra, Ket and Norms

|Ψ⟩ = ⟨Ψ| =

⟨Ψ|Ψ⟩ =
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Matrix Product States – Why contraction order matters!

Different contraction orders yield different contraction complexities

⟨Ψ|Ψ⟩ =
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Matrix Product States – Why contraction order matters!

Number of operations

O(D2d2)

O(D2d3)
O(D2d4)
O(Dd5)
O(D2d2)

O(D2d3)
O(D2d4)
O(Dd5)
O(d6)

� Don’t try this at home �

The number of matrix elements needed scales exponentially with the number of sites N.
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Matrix Product States – Why contraction order matters!
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Complexity

The number of matrix elements does not dependent on the number of sites N at all and the

procedure scales linear in time with N.
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Matrix Product States – Calculation of an expectation value

Expectation values

⟨O⟩ = ⟨Ψ|O |Ψ⟩
⟨Ψ|Ψ⟩

⟨Oi⟩ = ⟨Ψ|Oi |Ψ⟩
⟨Ψ|Ψ⟩

O⟨Ψ|O |Ψ⟩ =
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Example – DMRG calculation

Spin 1 Heisenberg chain

H = ∑
i
Sxi S

x
i+1 + S

y
i S

y
i+1 + Szi S

z
i+1
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Data provided by Claudius Hubig, MPQ
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Summary – MPS

MPS is an Ansatz to describe many-body states with polynomially many parameters

The pictorial description simplifies the formulation of calculations and algorithms

We have to be careful about the order of contractions
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Section 3

iTEBD
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Minimization of energy

Goal

Find the groundstate of a Hamiltonian H, i.e. find the state with the smallest energy eigenvalue.

Classical mechanics

V(x)

x

Quantum mechanics

Find ∣Ψmin⟩ such that

Emin =
⟨Ψmin∣H ∣Ψmin⟩

⟨Ψmin∣Ψmin⟩

is minimal.
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Reminder – Tensor network notation

A Tensor Network State

|Ψ⟩ = ∑
σ1…σn

∑
a1,…,an−1

A
σ1
a1
A
σ2
a1,a2 ⋯A

σn−1
an−2,an−1

A
σn
an−1

∣σ1σ2 … σn⟩

A
σ1
1 A

σ2
2 A

σ3
3 A

σ4
4

a1 a2 a3

σ1 σ2 σ3 σ4

|Ψ⟩ = ⟨Ψ| =
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Reminder – Calculation of energies

Expectation value

⟨E⟩ = ⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

Calculation of an observable

O⟨Ψ|O |Ψ⟩ =
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Energy minimization via imaginary time evolution

Motivation

The ground state is the state with the smallest energy. All other states are suppressed more

quickly by an exponential.

Time evolution in imaginary time

∣Ψ0⟩ = lim
δ→∞

exp(−Hδ) |Ψ⟩
‖exp(−Hδ) |Ψ⟩‖

= lim
δ→∞

U(δ) |Ψ⟩
‖U(δ) |Ψ⟩‖
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Trotterization of an operator

Evolution operator

U(δ) = e−δH

Ising Model

H = ∑
i
Szi S

z
i+1 = ∑

i
hi,i+1

Heven = ∑
i even

hi,i+1 Hodd = ∑
i odd

hi,i+1

H = Heven + Hodd
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Trotterization of an operator

Evolution operator

U(δ) = e−δH

Trotterization of an operator

U(δ) = e−δH

= e−δHevene−δHodde−δ2[Heven,Hodd]

≈ e−δHevene−δHodd

Pictorial representation

Ueven/odd
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Making life easy: infinite systems

General MPS

… A B C D …

Translationally invariant MPS

… A B A B …
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Back to the start: An MPS with diagonal matrices

We started with

=cσ1,σ2,...,σN

and got

=cσ1,σ2,...,σN
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The iTEBD algorithm

We start with an infinite system that consists of two sites A and B

... ΓB λB ΓA λA ΓB λB ΓA λA ΓB λB ...

Disclaimer

This algorithm is proven to be numerically unstable. You should NOT use it in research, it is

shown here due to its simplicity.

Slide 46 Tensor Networks | March 4 – 7, 2019 | Patrick Emonts



The iTEBD algorithm

We start with an infinite system that consists of two sites A and B

... ΓB λB ΓA λA ΓB λB ΓA λA ΓB λB ...

Disclaimer

This algorithm is proven to be numerically unstable. You should NOT use it in research, it is

shown here due to its simplicity.

Slide 46 Tensor Networks | March 4 – 7, 2019 | Patrick Emonts



The iTEBD algorithm

... λB ΓA λA ΓB λB ...

U

Θ U ̃λA V†

λB λ−1
B U ̃λA V† λ−1

B
λB

... λB ΓA λA ΓB λB ...

U

Apply the operator U to

sites A and B

Contract all indices and

group indices (blue and

green)

Compute SVD of the

tensor

Reintroduce λB

Update ΓA and ΓB

Repeat the procedure

with the sites B and A
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Application on odd an even sites

Application to even sites

... ΓB λB ΓA λA ΓB λB ΓA λA ΓB λB ...

Ueven Ueven

Application to odd sites

... ΓB λB ΓA λA ΓB λB ΓA λA ΓB λB ...

Uodd Uodd
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Results for an Ising spin system

Ising Model

H = ∑
i
Szi S

z
i+1 = ∑

i
hi,i+1

0 500 1,000 1,500 2,000 2,500 3,000
−1
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δ = 0.001
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Outlook

PEPS MERA
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