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1. Introduction

FPGA: Field-Programmable Gate Array
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• Well established in HEP experiments

• Finding the way into data centers

• Can be substitution for:
• ASICs (traditionally)

• Processors (recently)

• Growing    applications     of FPGAs
market

popularity



2. The Emergence of  FPGAs
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1959: Invention 
of the MOSFET

1959: First Integrated 
Circuit (IC)

1961: First IC-based 
Computer

1963: CMOS
1965: Moore’s Law

1975: Programmable 
Logic Array (PLA)

1983: EEPROM &
FLASH Memory

1985: First FPGA
(Xilinx XC2064) 2015: Intel

acquires Altera 2016: 16nm Virtex
UltraScale+

Note: All dates are rather indicative than exact



Digital Logic

• Digital information is processed and
stored in binary form

• Boolean algebra and truth tables are
used to express combinatorial logic circuits

• Basic logical function (AND, OR, etc.) are
abstracted in logical gates

• Gates can efficiently be implemented in
transistor circuits (e.g. CMOS)

• Every logical function can be implemented
by using gates
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3. Digital Design

Truth table of
logical function

Transistor
circuit
(CMOS)

NAND 
logical gate



3. Digital Design

Digital Building Blocks and Processes

There are two kinds of processes
with different building blocks:

1. Combinatorial
→ “Instant” state changes, e.g.:
• Classical gates (especially NAND & NOR)

• Multiplexer (MUX)

2. Synchronous
→ “Clocked” state changes, e.g.:
• Flip Flop (e.g. D-FF)

• FIFO (First-In First-Out)
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NAND NOR

MUX D-FF



4. Anatomy of  FPGAs

Architecture

Configurable logic blocks, interconnected by a
switch matrix and surrounded by I/Os.

• CLB: Configurable Logic Block

• IOB: Input-Output Block

• PIC: Programmable Interconnect

• Clock Management

• Memory

• Hardened Cores

7A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Embedded Memory

CLB

IOB

PIC



4. Anatomy of  FPGAs

Configurable Logic Block (CLB)
(Also “logic cell” or “logic element”)

• Logic functions are implemented in Look-
Up-Tables (LUTs)

• LUTs can implement any arbitrarily 
defined n-input Boolean function

• D-type flip-flops (storage elements) can
be triggered on either clock edge

• Flip-flops can take input from outside the 
CLB or from the LUT
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Simplified example CLB with one
4-input LUT and one flip-flop



4. Anatomy of  FPGAs

Hardened Cores (Also called “IP cores”)
Complicated tasks (e.g. multiplication) take up a lot of logic cells
→ Hardened cores in silicon for more effective use of resources

Typical cores found in modern FPGAs:

• Memory (Block RAM)

→ FIFO

→ Shift Register

• DSP blocks

• Clocking (Programmable PLL)

• Communication interfaces (e.g. PCIe)

• Serializer/Deserializer (SerDes)

• CPU
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Exemplary DSP block with multiplier, 
accumulator and pipeline stages



5. Classical Design Flow
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• First: Sketch design on paper!
• Write design in HDL (hardware 

description language), e.g. VHDL or 
Verilog, or use schematic entry

• Behavioral Simulation • Synthesis tool converts hardware 
description into netlist

• Can perform logic optimization, 
register load balancing, etc.

• Find best location of primitives for 
all elements in netlist

• Programming interconnects, 
respecting all timing information

• Placement can be constrained and 
defined by user 

• Generating bit stream for direct 
FPGA programming or for external 
memory configuration 



5. Classical Design Flow
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How it looks like…
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Recapture

• Digital Design
• Digital information is binary

• We can express logical function in Boolean algebra or truth tables and model them in circuits 
of logical gates

• Processes can be combinatorial (instant) or synchronous (sequential)

• Anatomy of FPGAs
• Configurable logic blocks, surrounded by I/Os and interconnected by a switch matrix

• Programming the FPGA: “Writing values into LUTs and configuring switches”

• Dedicated blocks for memory, clocks, signal processing, communication, etc.

• Design Flow
• The hardware description is translated into a netlist by the synthesizer

• The placing and routing finds the best locations for the primitives and interconnects the 
components



6.1 Software vs. HDL

• Software / CPU
• Specifying a sequence of instructions

• Implicit sequential processes

• Explicit concurrency

• Fixed memory hierarchy

• HDL / FPGA
• Describing structure and behavior of digital components

• (Implicit) Arbitrary concurrency

• Synchronous and/or purely combinatorial processes

• Notions to explicitly express time (in simulation)

• Flexible memory hierarchy
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6.1 Software vs. HDL

Example: For-Loop
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HDLSoftware



6.2 GPU vs. FPGA
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• Data path and data types:

• Memory:

• Floating Point:

• Power Efficiency*:

Fixed

complex hierarchies

Native support

Low to Medium

Fully customizable

Flexible

Limited support

Very High

GPU FPGA

GPU:   Large array of ALU cores, including cache memory and thread interfaces
FPGA: Large array of logic blocks, surrounded by I/Os, connected by a switch matrix

X

X

X

X

* “GPU vs FPGA Performance Comparison”- BERTEN DSP S.L., BWP001 v1.0, 2016



7. Pros & Cons
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• High flexibility

• Customizable data types

• Arbitrary concurrency

• Connectivity

• Power efficiency

• Real time suitability

• Suitable for safety critical 
applications

• High complexity

• Limited “math support”

• Effort for floating point 
implementation

• It’s hardware design - software 
knowledge does not apply

• Cost (for large devices)

Pros Cons



8. Application Areas

Some of many application areas:

• Networking/Telecommunication
→ High throughput, I/O density

• Space 
→ Radiation hardness, reconfigurability

• Medical/Scientific Instrumentation
→ Connectivity and customizability

• Image Processing
→ High throughput, parallelism, interfacing

• Machine Learning
→ Flexible data types, power efficiency
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9.1 Example: High Speed Data Converter

Typical challenge in experimental setup:
Interfacing to high speed analog-digital converter (ADC)

Example:   8 bit ADC with 1.25 GHz sampling rate

Challenge: Interface between high frequency sampling rate and lower FPGA-
internal processing frequency

→ Deserialize data!
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9.2 Example: CMS Phase II DAQ
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#lonelychairsatcerncms.cern



9.2 Example: CMS Phase II DAQ

• Phase II Trigger & DAQ
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40 MHz 750 kHz 7.5 kHz

CMS Level-1 Trigger High-Level Trigger

• FPGA implementation
• 12.5 µs decision time
• 98.125% rejection

• Standard processing nodes
• < 1 s decision time
• 99% rejection

• ~50 k High-speed 
links from detector

• ~50 Tb/s throughput



• Hardcore real-time requirements

• High I/O density

• Custom protocols, (partially) custom interfaces

• Power and space requirements (underground cavern)

9.2 Example: CMS Phase II Tracker
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Predestined for FPGAs!



10. Getting Started

• Visit Giorgios lecture!

• Low-cost development boards:
• TinyFPGA (open source) – Lattice XO2/iCE40 FPGA
• Digilent Basys3 – Xilinx Artix-7 FPGA

• Most Vendors tool chains are for free,
open source chains exist for some FPGAs
(Project IceStorm for Lattice iCE40 FPGAs)

• Try out different languages:
VHDL, Verilog, Migen, MyHDL,…

• Start with blinking LED (the “Hello World” of hardware)

• Trial and error + online education

• Realize your project!
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TinyFPGA

Basys3



Backup: Languages

• Languages are often divided into two subsets:
• Synthesizable → can be translated into a physical design
• Non-synthesizable → only used for simulation

• Hardware Description Languages (HDLs)
→ Good for advanced design optimization

• Describe and simulate hardware on behavioral/RTL level
• VHDL, Verilog (the “classical” HDLs)
• SystemVerilog (enhanced Verilog)
• Migen, Chisel, Clash, Spinal … (unconventional/experimental languages)

• High Level Synthesis (HLS)
→ Good for fast development cycles

• Higher level abstraction, based on C/C++
• HDL as output product
• OpenCL: Cross-Platform parallel language (good for SoCs)
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