A Scientist’s Guide
to FPGAs

iCSC 2019

Alexander Ruede
(CERN/KIT-IPE)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Content

1. Introduction

2. The Emergence of FPGAs

3. Digital Design

4. Anatomy of FPGAs]
5. Classical Design Flow _. .%
6. CPU/GPU vs. FPGA (O
7. Pros & Cons f%
8. Applications 0
9. Examples

10. Getting Started

A Scientist’s Guide to FPGAs — Alexander Ruede — iCSC 2019 2

School of Computing

1. Introduction

FPGA: Field-Programmable Gate Array

market
Growing 4 applications | of FPGAs
| popularity _J

Total A
Cost

l‘ -
) \ Crossover

Point

Well established in HEP experiments

Finding the way into data centers

Can be substitution for:
« ASICs (traditionally)
* Processors (recently) - >

Volume

School of Computing

2. The Emergence of FPGAs

1959: Invention 1.9595 First Integrated .(1:961: F;rst |IC-based
of the MOSEET Circuit (IC) omputer
1963: CMOS

1965: Moore’s Law
1975: Programmable

Logic Array (PLA)

1985: First FPGA
(Xilinx XC2064) 2015: Intel
1983: EEPROM & acquires Altera 2016: 16nm Virtex

FLASH Memory me- UltraScale+
Note: All dates are rather indicative than exact

A Scientist’s Guide to FPGAs — Alexander Ruede — iCSC 2019 4

| of Computing

3. Digital Design

Digital Logic Truth table of
g g 8 2 :ll logical function
* Digital information is processed and 1 0|1
stored in binary form 1 110
N NAND
Boolean algebra and truth tables are ‘4 logical gate f

used to express combinatorial logic circuits

 Basic logical function (AND, OR, etc.) are _} ""j ""i

abstracted in logical gates — e

* Gates can efficiently be implemented in 4 o .
transistor circuits (e.g. CMOS) 1 ircuit

* Every logical function can be implemented —_ (CMOs)
by using gates 1

School of Computing

3. Digital Design

Digital Building Blocks and Processes
NAND NOR

There are two kinds of processes

with different building blocks: —
1. Combinatorial —

- “Instant” state changes, e.qg.:
 Classical gates (especially NAND & NOR)

* Multiplexer (MUX) MUX D-FF
2. Synchronous - 1

—> “Clocked” state changes, e.g.: —

* Flip Flop (e.g. D-FF) &

e FIFO (First-In First-Out)

School of Computing

4. Anatomy of FPGAs

Architecture

Embedded Memory

Configurable logic blocks, interconnected by a
switch matrix and surrounded by 1/0Os.

e CLB: Configurable Logic Block —
* |OB: Input-Output Block

* PIC: Programmable Interconnect

* Clock Management B CLB —

Memory

PIC

Hardened Cores

10B —---

A Scientist’s Guide to FPGAs — Alexander Ruede — iCSC 2019 7

School of Computing

4. Anatomy of FPGAs

Configurable Logic Block (CLB)

(Also “logic cell” or “logic element”) E CLB

* Logic functions are implemented in Look- E
Up-Tables (LUTs) N

* LUTs can implement any arbitrarily C-E- -
defined n-input Boolean function ° T

» D-type flip-flops (storage elements) can

be triggered on either clock edge ot oo e

* Flip-flops can take input from outside the Simplified example CLB with one
CLB or from the LUT 4-input LUT and one flip-flop

nnnnnnnnnnnnnnnnn

4. Anatomy of FPGAs

Hardened Cores (Also called “IP cores”)
Complicated tasks (e.g. multiplication) take up a lot of logic cells
— Hardened cores in silicon for more effective use of resources

Typical cores found in modern FPGAS:

e Memory (Block RAM) A b
> FIFO
— Shift Register

DSP blocks !
Clocking (Programmable PLL) '
Communication interfaces (e.g. PCle) c >

Serializer/Deserializer (SerDes)

* CPU Exemplary DSP block with multiplier,
accumulator and pipeline stages

School of Computing

5. Classical Design Flow

e First: Sketch design on paper!

e Write design in HDL (hardware Des(iggef)"try
description language), e.g. VHDL or
Verilog, or use schematic entry l

* Behavioral Simulation * Synthesis tool converts hardware
description into netlist
Can perform logic optimization,

register load balancing, etc.

Synthesis
(Tool)

I

] [J
Place and Route]
] [}

* Find best location of primitives for
all elements in netlist

* Programming interconnects,
respecting all timing information

* Placement can be constrained and
defined by user

(Tool)

I

Device
Configuration
(Tool)

Generating bit stream for direct
FPGA programming or for external
memory configuration

N N

CERN
School

5. Classical Design Flow

ok [clk_IBUF_inst clk_IBUF_BUFG _inst
e ° data_b_IBUF[0]_inst ‘ 1~ 0 [~ 0
OW I 00 S I e... data_i3:0 [LN [S “eurc
L V
IBUF
sig e i 2
1 library IEEE; data_a_IBUF[0]_inst 10
. 0 I[~_0
Z use TEEE.STD_LOGIC 1164 .ALL; data_a[3:0] L= 1" o}
3 IBUF 12
4 entity test is data_b_IBUF[1]_inst s
T G LuT4
£ Port{
6 clk @ in std logic; IBUF data_a_IBUF[2]_inst
. . 2 i o
7 rst @ 1n Std_lOglC, data_a_IBUF[1]_inst
g data_a : in std logic vector{ 2 downto & 3; 1 I [~._0 1BUF sig_e_reg
_ . _ - L~ sig_e_i_1
e data_b : in std logic wvector{ 3 downto &); BUF data_b_IBUF[2]_inst L T c
18 data_out : out std_logic % © i cE
H)i IBUF B @ o Q| data_out
12 end test; data_a_IBUF[3]_inst ° R
13 3 [~ 0 1 FDRE
14 architecture Behavioral of test is I{UF LTS
15 signal sig d : std logic wector{ 3 downto &); rst_IBUF_inst
. . - . data_b_ IBUF[3]_inst | o
16 signal sig_e : std_logic; 3 o
17 begin g IBUF
18 sig d <= data_a xor data_b; ot [
19 sync_proc @ process(clk)
28 begin 0 ns 00 ns 0 ns 400 ns 500 ns
21 if rising_edge(clk) then
22 if rst = "1" then
23 sig e <= '6°; W data 220
24 else : f”—d["']
75 sig e <= sig d(®) and sig d(1}; e B
26 end if; %[2]
27 end if; B 1]
28 end process; 1% [0]
29 data_out <= =sig_e; > W data_b{3:0]
EL:] end Behavioral;

i data_out

CERN
School of Computing

Recapture

* Digital Design
 Digital information is binary
* We can express logical function in Boolean algebra or truth tables and model them in circuits
of logical gates
* Processes can be combinatorial (instant) or synchronous (sequential)

 Anatomy of FPGAs
* Configurable logic blocks, surrounded by //Os and interconnected by a switch matrix
* Programming the FPGA: “Writing values into LUTs and configuring switches”
* Dedicated blocks for memory, clocks, signal processing, communication, etc.

* Design Flow
* The hardware description is translated into a netlist by the synthesizer
* The placing and routing finds the best locations for the primitives and interconnects the
components

A Scientist’s Guide to FPGAs — Alexander Ruede — iCSC 2019 12

School of Computing

6.1 Software vs. HDL

» Software / CPU

» Specifying a sequence of instructions
* Implicit sequential processes

* Explicit concurrency

* Fixed memory hierarchy

* HDL / FPGA

* Describing structure and behavior of digital components
(Implicit) Arbitrary concurrency

Synchronous and/or purely combinatorial processes
Notions to explicitly express time (in simulation)
Flexible memory hierarchy

nnnnnnnnnnnnnnnnn

6.1 Software vs. HDL

Example: For-Loop

Initialize Loop Software HDL
Variables l l 1
Loop Operation Loop %%eram" Loop %ﬂefatmn o oo |Loop :ﬁratlon

T

nnnnnnnnnnnnnnnnn

6.2 GPU vs. FPGA

GPU: Large array of ALU cores, including cache memory and thread interfaces
FPGA: Large array of logic blocks, surrounded by |/Os, connected by a switch matrix

GPU FPGA
e Data path and data types: Fixed Fully customizable
* Memory: complex hierarchies Flexible
* Floating Point: Native support Limited support
* Power Efficiency*: Low to Medium Very High

* “GPU vs FPGA Performance Comparison”- BERTEN DSP S.L., BWP001 v1.0, 2016

nnnnnnnnnnnnnnnnn

7. Pros & Cons

High flexibility High complexity
Customizable data types Limited “math support”

Arbitrary concurrency Effort for floating point

Connectivity implementation
It’s hardware design - software
knowledge does not apply

Cost (for large devices)

Power efficiency
Real time suitability

Suitable for safety critical
applications

nnnnnnnnnnnnnnnnn

8. Application Areas

Some of many application areas:

* Networking/Telecommunication
-> High throughput, 1/O density

* Space
- Radiation hardness, reconfigurability

_\“-
* Medical/Scientific Instrumentation
- Connectivity and customizability

* Image Processing ﬁ
->» High throughput, parallelism, interfacing u.

 Machine Learning
- Flexible data types, power efficiency

cenn (8: A Scientist’s Guide to FPGAs — Alexander Ruede — iCSC 2019 17
School of Computing

9.1 Example: High Speed Data Converter

Typical challenge in experimental setup:
Interfacing to high speed analog-digital converter (ADC)

Example: 8 bit ADC with 1.25 GHz sampling rate

Challenge: Interface between high frequency sampling rate and lower FPGA-
internal processing frequency

- Deserialize data!

FPGA
4 \

312.5 MHz

8 bit 1.25 GHz 8 e.g. 100 MHz
Analog- , > 1:4 8 FIFO Z Data
Digital ”8 SerDes 732 Processing
Converter 8
8

J

school of Computing

9.2 Example: CMS Phase Il DAQ

cms.cern

LSC A Scientist’s Guide to FPGAs — Alexander Ruede — iCSC 2019 19

School of Computing

9.2 Example: CMS Phase || DAQ

* Phase Il Trigger & DAQ

o o

40 MHz 750 kHz
CMS Level-1 Trigger High-Level Trigger
 ~50 k High-speed * FPGA implementation e Standard processing nodes
links from detector e 12.5 ps decision time e <1 sdecisiontime

e ~50Tb/s throughput * 98.125% rejection * 99% rejection

nnnnnnnnnnnnnnnnn

9.2 Example: CMS Phase |l Tracker

4 ' 4 N
DAQ Data Hub
Front-End Modules Pre-processing
Track .
Reconstruction Level 1 Trigger
4—P Control > Correlator
y'y & Fitting
e J e J
FPGA/SoC

implementations

Hardcore real-time requirements

High 1/O density

Custom protocols, (partially) custom interfaces
Power and space requirements (underground cavern)

-

- Predestined for FPGASs!

CERN
School of Computing

10. Getting Started

TinyFPGA

Visit Giorgios lecture!

Low-cost development boards:
* TinyFPGA (open source) — Lattice XO2/iCE40 FPGA
* Digilent Basys3 — Xilinx Artix-7 FPGA

Most Vendors tool chains are for free,
open source chains exist for some FPGAs
(Project IceStorm for Lattice iCE40 FPGAs)

Try out different languages:
VHDL, Verilog, Migen, MyHDL,...

Start with blinking LED (the “Hello World” of hardware)
Trial and error + online education

* Realize your project!

A Scientist’s Guide to FPGAs — Alexander Ruede — iCSC 2019 22

Backup: Languages

* Languages are often divided into two subsets:
* Synthesizable - can be translated into a physical design
* Non-synthesizable - only used for simulation

 Hardware Description Languages (HDLs)
—> Good for advanced design optimization
* Describe and simulate hardware on behavioral/RTL level
* VHDL, Verilog (the “classical” HDLs)
» SystemVerilog (enhanced Verilog)
* Migen, Chisel, Clash, Spinal ... (unconventional/experimental languages)

e High Level Synthesis (HLS)
—> Good for fast development cycles

* Higher level abstraction, based on C/C++
* HDL as output product
* OpenCL: Cross-Platform parallel language (good for SoCs)

School of Computing

