
A Scientist’s Guide
to FPGAs

iCSC 2019

Alexander Ruede
(CERN/KIT-IPE)

Content

A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019 2

1. Introduction

2. The Emergence of FPGAs

3. Digital Design

4. Anatomy of FPGAs

5. Classical Design Flow

6. CPU / GPU vs. FPGA

7. Pros & Cons

8. Applications

9. Examples

10. Getting Started

1. Introduction

FPGA: Field-Programmable Gate Array

3A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

• Well established in HEP experiments

• Finding the way into data centers

• Can be substitution for:
• ASICs (traditionally)

• Processors (recently)

• Growing applications of FPGAs
market

popularity

2. The Emergence of FPGAs

4A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

1959: Invention
of the MOSFET

1959: First Integrated
Circuit (IC)

1961: First IC-based
Computer

1963: CMOS
1965: Moore’s Law

1975: Programmable
Logic Array (PLA)

1983: EEPROM &
FLASH Memory

1985: First FPGA
(Xilinx XC2064) 2015: Intel

acquires Altera 2016: 16nm Virtex
UltraScale+

Note: All dates are rather indicative than exact

Digital Logic

• Digital information is processed and
stored in binary form

• Boolean algebra and truth tables are
used to express combinatorial logic circuits

• Basic logical function (AND, OR, etc.) are
abstracted in logical gates

• Gates can efficiently be implemented in
transistor circuits (e.g. CMOS)

• Every logical function can be implemented
by using gates

5A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

3. Digital Design

Truth table of
logical function

Transistor
circuit
(CMOS)

NAND
logical gate

3. Digital Design

Digital Building Blocks and Processes

There are two kinds of processes
with different building blocks:

1. Combinatorial
→ “Instant” state changes, e.g.:
• Classical gates (especially NAND & NOR)

• Multiplexer (MUX)

2. Synchronous
→ “Clocked” state changes, e.g.:
• Flip Flop (e.g. D-FF)

• FIFO (First-In First-Out)

6A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

NAND NOR

MUX D-FF

4. Anatomy of FPGAs

Architecture

Configurable logic blocks, interconnected by a
switch matrix and surrounded by I/Os.

• CLB: Configurable Logic Block

• IOB: Input-Output Block

• PIC: Programmable Interconnect

• Clock Management

• Memory

• Hardened Cores

7A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Embedded Memory

CLB

IOB

PIC

4. Anatomy of FPGAs

Configurable Logic Block (CLB)
(Also “logic cell” or “logic element”)

• Logic functions are implemented in Look-
Up-Tables (LUTs)

• LUTs can implement any arbitrarily
defined n-input Boolean function

• D-type flip-flops (storage elements) can
be triggered on either clock edge

• Flip-flops can take input from outside the
CLB or from the LUT

8A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Simplified example CLB with one
4-input LUT and one flip-flop

4. Anatomy of FPGAs

Hardened Cores (Also called “IP cores”)
Complicated tasks (e.g. multiplication) take up a lot of logic cells
→ Hardened cores in silicon for more effective use of resources

Typical cores found in modern FPGAs:

• Memory (Block RAM)

→ FIFO

→ Shift Register

• DSP blocks

• Clocking (Programmable PLL)

• Communication interfaces (e.g. PCIe)

• Serializer/Deserializer (SerDes)

• CPU

9A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Exemplary DSP block with multiplier,
accumulator and pipeline stages

5. Classical Design Flow

10A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

• First: Sketch design on paper!
• Write design in HDL (hardware

description language), e.g. VHDL or
Verilog, or use schematic entry

• Behavioral Simulation • Synthesis tool converts hardware
description into netlist

• Can perform logic optimization,
register load balancing, etc.

• Find best location of primitives for
all elements in netlist

• Programming interconnects,
respecting all timing information

• Placement can be constrained and
defined by user

• Generating bit stream for direct
FPGA programming or for external
memory configuration

5. Classical Design Flow

11A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

How it looks like…

12A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Recapture

• Digital Design
• Digital information is binary

• We can express logical function in Boolean algebra or truth tables and model them in circuits
of logical gates

• Processes can be combinatorial (instant) or synchronous (sequential)

• Anatomy of FPGAs
• Configurable logic blocks, surrounded by I/Os and interconnected by a switch matrix

• Programming the FPGA: “Writing values into LUTs and configuring switches”

• Dedicated blocks for memory, clocks, signal processing, communication, etc.

• Design Flow
• The hardware description is translated into a netlist by the synthesizer

• The placing and routing finds the best locations for the primitives and interconnects the
components

6.1 Software vs. HDL

• Software / CPU
• Specifying a sequence of instructions

• Implicit sequential processes

• Explicit concurrency

• Fixed memory hierarchy

• HDL / FPGA
• Describing structure and behavior of digital components

• (Implicit) Arbitrary concurrency

• Synchronous and/or purely combinatorial processes

• Notions to explicitly express time (in simulation)

• Flexible memory hierarchy

13A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

6.1 Software vs. HDL

Example: For-Loop

14A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

HDLSoftware

6.2 GPU vs. FPGA

15A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

• Data path and data types:

• Memory:

• Floating Point:

• Power Efficiency*:

Fixed

complex hierarchies

Native support

Low to Medium

Fully customizable

Flexible

Limited support

Very High

GPU FPGA

GPU: Large array of ALU cores, including cache memory and thread interfaces
FPGA: Large array of logic blocks, surrounded by I/Os, connected by a switch matrix

X

X

X

X

* “GPU vs FPGA Performance Comparison”- BERTEN DSP S.L., BWP001 v1.0, 2016

7. Pros & Cons

16A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

• High flexibility

• Customizable data types

• Arbitrary concurrency

• Connectivity

• Power efficiency

• Real time suitability

• Suitable for safety critical
applications

• High complexity

• Limited “math support”

• Effort for floating point
implementation

• It’s hardware design - software
knowledge does not apply

• Cost (for large devices)

Pros Cons

8. Application Areas

Some of many application areas:

• Networking/Telecommunication
→ High throughput, I/O density

• Space
→ Radiation hardness, reconfigurability

• Medical/Scientific Instrumentation
→ Connectivity and customizability

• Image Processing
→ High throughput, parallelism, interfacing

• Machine Learning
→ Flexible data types, power efficiency

17A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

9.1 Example: High Speed Data Converter

Typical challenge in experimental setup:
Interfacing to high speed analog-digital converter (ADC)

Example: 8 bit ADC with 1.25 GHz sampling rate

Challenge: Interface between high frequency sampling rate and lower FPGA-
internal processing frequency

→ Deserialize data!

18A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

9.2 Example: CMS Phase II DAQ

19A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

#lonelychairsatcerncms.cern

9.2 Example: CMS Phase II DAQ

• Phase II Trigger & DAQ

20A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

40 MHz 750 kHz 7.5 kHz

CMS Level-1 Trigger High-Level Trigger

• FPGA implementation
• 12.5 µs decision time
• 98.125% rejection

• Standard processing nodes
• < 1 s decision time
• 99% rejection

• ~50 k High-speed
links from detector

• ~50 Tb/s throughput

• Hardcore real-time requirements

• High I/O density

• Custom protocols, (partially) custom interfaces

• Power and space requirements (underground cavern)

9.2 Example: CMS Phase II Tracker

21A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

Predestined for FPGAs!

10. Getting Started

• Visit Giorgios lecture!

• Low-cost development boards:
• TinyFPGA (open source) – Lattice XO2/iCE40 FPGA
• Digilent Basys3 – Xilinx Artix-7 FPGA

• Most Vendors tool chains are for free,
open source chains exist for some FPGAs
(Project IceStorm for Lattice iCE40 FPGAs)

• Try out different languages:
VHDL, Verilog, Migen, MyHDL,…

• Start with blinking LED (the “Hello World” of hardware)

• Trial and error + online education

• Realize your project!

22A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

TinyFPGA

Basys3

Backup: Languages

• Languages are often divided into two subsets:
• Synthesizable → can be translated into a physical design
• Non-synthesizable → only used for simulation

• Hardware Description Languages (HDLs)
→ Good for advanced design optimization

• Describe and simulate hardware on behavioral/RTL level
• VHDL, Verilog (the “classical” HDLs)
• SystemVerilog (enhanced Verilog)
• Migen, Chisel, Clash, Spinal … (unconventional/experimental languages)

• High Level Synthesis (HLS)
→ Good for fast development cycles

• Higher level abstraction, based on C/C++
• HDL as output product
• OpenCL: Cross-Platform parallel language (good for SoCs)

23A Scientist’s Guide to FPGAs – Alexander Ruede – iCSC 2019

