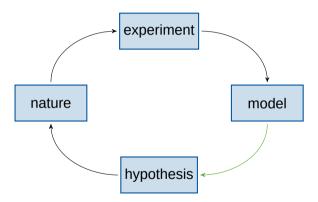
Tensor Networks

How physicists can tackle exponentially hard problems

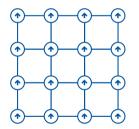
March 5, 2019 | Patrick Emonts | Max Planck Institute of Quantum Optics

Motivation



How complex is this problem?

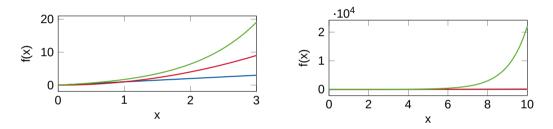
We take a system that can take two states \clubsuit and \checkmark



Number of possibilities

 $Z = 2^{N}$

How bad is exponential scaling?



Physical example

- 10²³ Number of atoms in 12 g of carbon
- 10⁸⁰ Number of atoms in the visible universe

Quantum Mechanics in 2 slides – Slide 1

Hilbert space \mathcal{H} vector space of all possible configurations state $|\Psi\rangle$ vector in \mathcal{H} that describes the state of the system Hamilton operator H Linear operator that describes the energy of the system

Quantum Mechanics in 2 slides – Slide 2

Schrödinger equation

 $i\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle = H|\Psi(t)\rangle$

time-independent Schrödinger equation (time-ind. Hamiltonian)

 $H|\Psi\rangle = E|\Psi\rangle$

Expressing spins with matrices

Definitions

$$| \bigstar \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$| \bigstar \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$S_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Calculating with spins

$$S_{Z}|\uparrow\rangle = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \frac{1}{2} |\uparrow\rangle$$

Combining multiple spins

Consider a system consisting of two spins that can two values (\checkmark and \uparrow)

Hilbert space \mathcal{H}

 $\mathcal{H} = \operatorname{span} \left\{ \left| \mathbf{\Psi}_{1} \right\rangle \left| \mathbf{\Psi}_{2} \right\rangle, \left| \mathbf{\Psi}_{1} \right\rangle \left| \mathbf{\uparrow}_{2} \right\rangle, \left| \mathbf{\uparrow}_{1} \right\rangle \left| \mathbf{\Psi}_{2} \right\rangle, \left| \mathbf{\uparrow}_{1} \right\rangle \left| \mathbf{\uparrow}_{2} \right\rangle \right\}$

Spins on different sites are combined by tensor products

$$|\Psi_{1}\rangle|\Psi_{2}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$
$$|\Psi_{1}\rangle|\Psi_{2}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$
$$|\Psi_{1}\rangle|\Psi_{2}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$
$$|\Psi_{1}\rangle|\Psi_{2}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$

Letting spins interact

Interaction of two spins

$$H = -J\left(S_1^z \otimes S_2^z\right)$$

Matrix representation

$$H = -J \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix}$$
$$= \frac{J}{4} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{J}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Calculating an expectation value

Preparation of a state

$$\begin{aligned} |\Psi\rangle &= \sqrt{0.5} |\uparrow_1\rangle |\downarrow_2\rangle + \sqrt{0.5} |\downarrow_1\rangle |\uparrow_2\rangle \\ &= \sqrt{0.5} |\uparrow_1\downarrow_2\rangle + \sqrt{0.5} |\downarrow_1\uparrow_2\rangle \\ &= \sqrt{0.5} |\uparrow_1\downarrow_2\rangle + \sqrt{0.5} |\downarrow_1\uparrow_2\rangle \\ &= \sqrt{0.5} |\uparrow_1\downarrow\rangle + \sqrt{0.5} |\downarrow_1\uparrow\rangle \\ &= \begin{pmatrix} 0\\ \sqrt{0.5}\\ \sqrt{0.5}\\ 0 \end{pmatrix} \end{aligned}$$

Expectation value

$$\begin{aligned} H \rangle &= \langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle \\ &= \langle \Psi | H | \Psi \rangle \\ &= \frac{J}{4} (\circ \sqrt{0.5} \sqrt{0.5} \circ) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{0}{\sqrt{0.5}} \\ \sqrt{0.5} \\ \sqrt{0.5} \\ 0 \end{pmatrix} \\ &= -\frac{J}{4} \end{aligned}$$

Summary – Introduction

Computation

- Computational complexity of many-body systems scales exponentially with the system size
- · We cannot solve those systems exactly and have to use approximate methods

Physics

- Quantum mechanical systems evolve according to the Schrödinger equation
- We are interested in the ground-state $|\Psi\rangle$ and expectation values $\langle E \rangle = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$

Tensor Networks

Idea

Use an Ansatz with polynomially many parameters although the Hilbert space has exponentially many states

We explore only a small part of the Hilbert space

What is a Tensor Network?

A general quantum mechanical state

$$|\Psi\rangle = \sum_{\sigma_1...\sigma_n} c_{\sigma_1,\sigma_2...\sigma_N} |\sigma_1\sigma_2...\sigma_n\rangle$$

What is a Tensor Network?

A general quantum mechanical state

$$|\Psi\rangle = \sum_{\sigma_1 \dots \sigma_n} c_{\sigma_1, \sigma_2 \dots \sigma_N} \left| \sigma_1 \sigma_2 \dots \sigma_n \right\rangle$$

Problem

The coefficients depend on the configuration of all spins. Thus, there are exponentially many coefficients.

A fancy way to write a quantum mechanical state

$$|\Psi\rangle = \sum_{\sigma_1 \dots \sigma_n} \underbrace{\sum_{a_1, \dots, a_{n-1}} A_{a_1}^{\sigma_1} A_{a_1, a_2}^{\sigma_2} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_n}}_{c_{\sigma_1, \sigma_2 \dots \sigma_N}} |\sigma_1 \sigma_2 \dots \sigma_n\rangle$$

Tensor Networks – Thinking about Indices

A Tensor Network State

$$|\Psi\rangle = \sum_{\sigma_1...\sigma_n} \sum_{a_1,...,a_{n-1}} A_{a_1}^{\sigma_1} A_{a_1,a_2}^{\sigma_2} \cdots A_{a_{n-2},a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_n} |\sigma_1 \sigma_2 \dots \sigma_n\rangle$$

Dimensions of object A

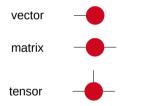
 σ : physical index: (\uparrow , \blacklozenge)

$$A^{\sigma}_{a_j,a_{j+1}}$$

a: virtual index

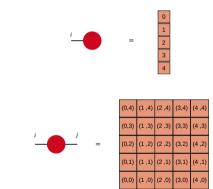
Dimension of physical index d (~ 10) Dimension of virtual index D (~ 100)

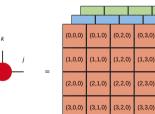
Pictorial representation



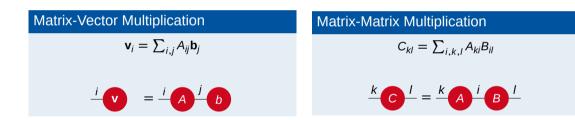
- The number of legs determines the number of indices of the object
- A connection ⇔ Contraction of indices

Pictorial representation as Arrays

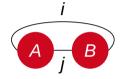




Calculations with pictures



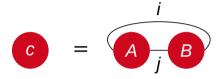
Calculations with pictures – Quiz



Trace

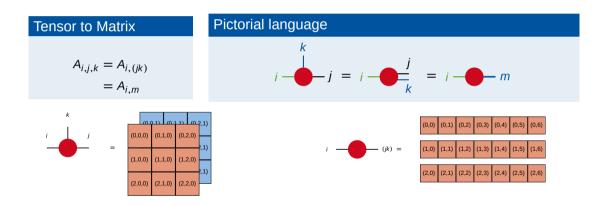
$$c = \sum_{i,j} A_{ij} B_{ji}$$
$$= \operatorname{Tr}[AB]$$

Calculations with pictures – Quiz



$$c = \sum_{i,j} A_{ij} B_{ji}$$
$$= \operatorname{Tr}[AB]$$

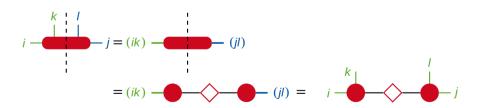
Tensor manipulations – Grouping



Tensor manipulations – Splitting

Splitting of tensor

$$A = U \cdot S \cdot V^{\dagger}$$



Singular Value Decomposition

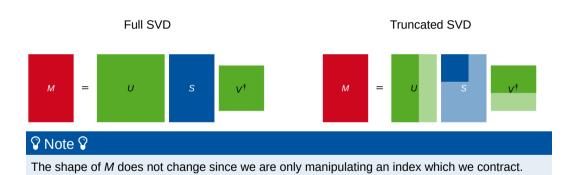
Singular Value Decomposition

 $M = U \cdot S \cdot V^{\dagger},$

M arbitrary *mxn* matrix

- U unitary mxm matrix
- S diagonal *mxn* matrix
- V unitary *nxn* matrix

SVD – Truncation



(C) MPC

SVD – Example

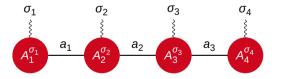
Original Image

Truncated Image (20 SV)

Matrix Product States

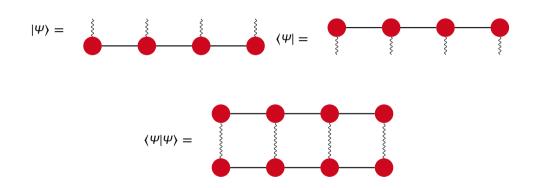
A Tensor Network State

$$|\Psi\rangle = \sum_{\sigma_1...\sigma_n} \sum_{a_1,...,a_{n-1}} A_{a_1}^{\sigma_1} A_{a_1,a_2}^{\sigma_2} \cdots A_{a_{n-2},a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_n} |\sigma_1 \sigma_2 \dots \sigma_n\rangle$$



- Dimension: 1D
- Typical quantities
 - correlations
 - expectation values of observables

Matrix Product States – Bra, Ket and Norms



Matrix Product States – How to get the Tensors?

A general quantum mechanical state

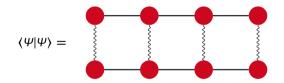
$$|\Psi\rangle = \sum_{\sigma_1...\sigma_n} c_{\sigma_1,\sigma_2...\sigma_N} |\sigma_1 \sigma_2 ... \sigma_n\rangle$$

Matrix Product state

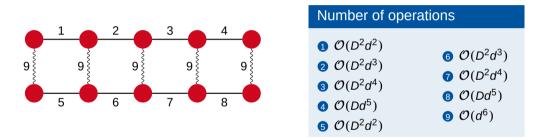
$$|\Psi\rangle = \sum_{\sigma_1...\sigma_n} \sum_{a_1,...,a_{n-1}} A_{a_1}^{\sigma_1} A_{a_1,a_2}^{\sigma_2} \cdots A_{a_{n-2},a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_n} \left| \sigma_1 \sigma_2 \dots \sigma_n \right\rangle$$

Matrix Product States – Why contraction order matters!

Different contraction orders yield different contraction complexities



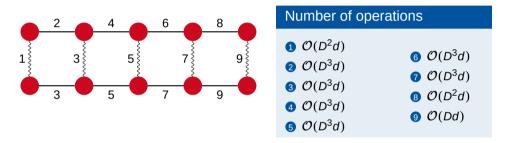
Matrix Product States – Why contraction order matters!



Don't try this at home

The number of matrix elements needed scales exponentially with the number of sites *N*.

Matrix Product States – Why contraction order matters!

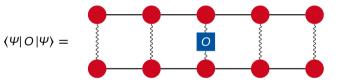


Complexity

The number of matrix elements does not dependent on the number of sites N at all and the procedure scales linear in time with N.

Matrix Product States - Calculation of an expectation value

Expectation values



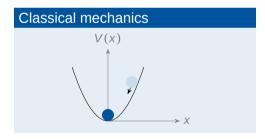
Summary – MPS

- MPS is an Ansatz to describe many-body states with polynomially many parameters
- The pictorial description simplifies the formulation of calculations and algorithms
- We have to be careful about the order of contractions

Minimization of energy

Goal

Find the groundstate of a Hamiltonian H, i.e. find the state with the smallest energy eigenvalue.



Quantum mechanics

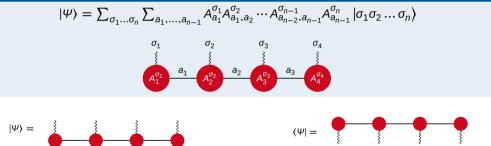
Find $|\Psi_{
m min}
angle$ such that

$$E_{\min} = rac{\langle \Psi_{\min} | H | \Psi_{\min} \rangle}{\langle \Psi_{\min} | \Psi_{\min} \rangle}$$

is minimal.

Tensor network notation

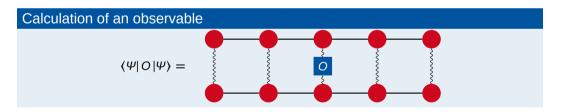
A Tensor Network State



Calculation of energies

Expectation value

$\langle E \rangle = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$



Energy minimization via imaginary time evolution

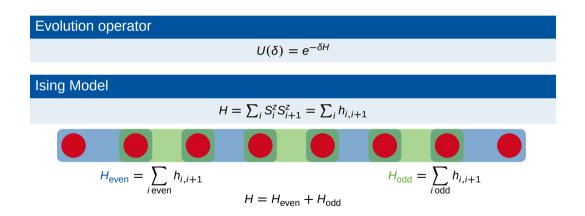
Motivation

The ground state is the state with the smallest energy. All other states are suppressed more quickly by an exponential.

Time evolution in imaginary time

$$\begin{aligned} |\Psi_0\rangle &= \lim_{\delta \to \infty} \frac{\exp(-H\delta) |\Psi\rangle}{\|\exp(-H\delta) |\Psi\rangle\|} \\ &= \lim_{\delta \to \infty} \frac{U(\delta) |\Psi\rangle}{\|U(\delta) |\Psi\rangle\|} \end{aligned}$$

Trotterization of an operator



Trotterization of an operator

Evolution operator

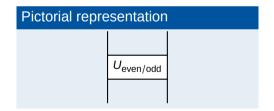
$$U(\delta) = e^{-\delta \theta}$$

Trotterization of an operator

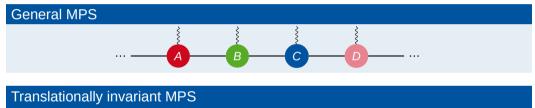
$$U(\delta) = e^{-\delta H}$$

$$= e^{-\delta H_{even}} e^{-\delta H_{odd}} e^{-\delta^2 [H_{even}, H_{odd}]}$$

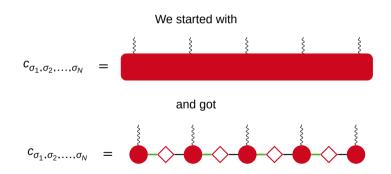
$$\approx e^{-\delta H_{even}} e^{-\delta H_{odd}}$$



Making life easy: infinite systems



Back to the start: An MPS with diagonal matrices



The iTEBD algorithm

We start with an infinite system that consists of two sites A and B

$$\cdots - \underbrace{ \begin{array}{c} \hline \\ B \end{array}} \\ \hline \\ \partial_B \end{array} \underbrace{ \begin{array}{c} \hline \\ A \end{array}} \\ \hline \\ \partial_A \end{array} \underbrace{ \begin{array}{c} \hline \\ B \end{array}} \\ \hline \\ \partial_B \end{array} \underbrace{ \begin{array}{c} \hline \\ A \end{array}} \\ \hline \\ \partial_B \end{array} \underbrace{ \begin{array}{c} \hline \\ A \end{array} \\ \hline \\ \partial_B \end{array} \underbrace{ \begin{array}{c} \hline \\ A \end{array}} \\ \hline \\ \partial_B \end{array} \underbrace{ \begin{array}{c} \hline \\ B \end{array} \\ \hline \\ \partial_B \end{array} \underbrace{ \begin{array}{c} \hline \\ B \end{array} \\ \hline \\ \partial_B \end{array} } \\ \cdots \end{array} \\ \cdots$$

Disclaimer

This algorithm is proven to be numerically unstable. You should NOT use it in research, it is shown here due to its simplicity.

The iTEBD algorithm

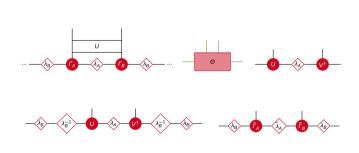
We start with an infinite system that consists of two sites A and B

$$\cdots - \underbrace{ \mathbf{\Gamma}_{B} } \underbrace{ \mathbf{A}_{B} } \underbrace{ \mathbf{\Gamma}_{A} } \underbrace{ \mathbf{A}_{A} } \underbrace{ \mathbf{\Gamma}_{B} } \underbrace{ \mathbf{A}_{B} } \underbrace{ \mathbf{\Gamma}_{A} } \underbrace{ \mathbf{A}_{A} } \underbrace{ \mathbf{\Gamma}_{B} } \underbrace{ \mathbf{A}_{B} } \cdots$$

Disclaimer

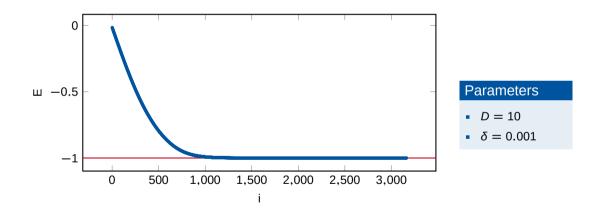
This algorithm is proven to be numerically unstable. You should NOT use it in research, it is shown here due to its simplicity.

The iTEBD algorithm

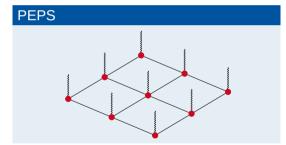


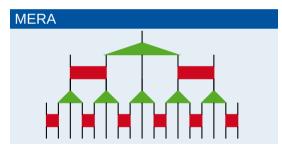
- Apply the operator U to sites A and B
- Contract all indices and group indices (blue and green)
- Compute SVD of the tensor
- 4 Reintroduce λ_B
- **(5)** Update Γ_A and Γ_B
- 6 Repeat the procedure with the sites B and A

Results for an Ising spin system



Outlook





Tensor Networks

How physicists can tackle exponentially hard problems

March 5, 2019 | Patrick Emonts | Max Planck Institute of Quantum Optics

References I

- Bascis Jacob C. Bridgeman and Christopher T. Chubb. "Hand-waving and Interpretive Dance: An Introductory Course on Tensor Networks". In: *Journal of Physics A: Mathematical and Theoretical* 50.22 (June 2, 2017), p. 223001
 - Román Orús. "A practical introduction to tensor networks: Matrix product states and projected entangled pair states". In: Annals of Physics 349 (Oct. 2014), pp. 117–158
 - Ulrich Schollwöck. "The density-matrix renormalization group in the age of matrix product states". In: Annals of Physics 326.1 (Jan. 2011), pp. 96–192
- iTEBD G. Vidal. "Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension". In: *Physical Review Letters* 98.7 (Feb. 12, 2007)

