Tensor Networks

How physicists can tackle exponentially hard problems

March 4-7, 2019 | Patrick Emonts | Max Planck Institute of Quantum Optics

Overview

Introduction

Matrix Product States
iTEBD

References

Section 1

Introduction

Motivation

Motivation

How complex is this problem?

We take a system that can take two states \uparrow and

Number of possibilities

$$
Z=2^{N}
$$

How bad is exponential scaling?

Physical example

- 10^{23} Number of atoms in 12 g of carbon
- 10^{80} Number of atoms in the visible universe

Quantum Mechanics in 2 slides - Slide 1

Hilbert space \mathcal{H} vector space of all possible configurations state $|\Psi\rangle$ vector in \mathcal{H} that describes the state of the system

Hamilton operator H Linear operator that describes the energy of the system

Note on Notation: Bra and Ket vectors

$|\Psi\rangle$ is a column vector | Ψ_{0} |
| :--- |
| Ψ_{1} |
| Ψ_{2} |

$\langle\psi|$ is a row vector

$$
\begin{array}{|l|l|l|}
\hline \bar{\psi}_{0} & \bar{\psi}_{1} & \bar{\psi}_{2} \\
\hline
\end{array}
$$

Quantum Mechanics in 2 slides - Slide 2

Schrödinger equation

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi(t)\rangle=H|\Psi(t)\rangle
$$

time-independent Schrödinger equation (time-ind. Hamiltonian)

$$
H|\Psi\rangle=E|\Psi\rangle
$$

Quantum Mechanics in 2 slides - Slide 2

Schrödinger equation

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}|\Psi(t)\rangle=H|\Psi(t)\rangle
$$

time-independent Schrödinger equation (time-ind. Hamiltonian)

$$
H|\Psi\rangle=E|\Psi\rangle
$$

Expectation values
Probability theory $\langle X\rangle=P(X) X$

Quantum mechanics

$$
\langle E\rangle=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Expressing spins with matrices

Definitions

$$
\begin{aligned}
& |\uparrow\rangle=\binom{1}{0} \\
& |\downarrow\rangle=\binom{0}{1}
\end{aligned}
$$

$$
S_{z}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Calculating with spins

$$
\begin{aligned}
S_{z}|\uparrow\rangle & =\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0} \\
& =\frac{1}{2}|\uparrow\rangle
\end{aligned}
$$

Combining multiple spins

Consider a system consisting of two spins that can two values (\downarrow and \uparrow)

Hilbert space \mathcal{H}

$\mathcal{H}=\operatorname{span}\left\{\left|\downarrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle,\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle,\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle,\left|\uparrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle\right\}$
Spins on different sites are combined by tensor products

$$
\begin{aligned}
& \left|\boldsymbol{\Downarrow}_{1}\right\rangle\left|\boldsymbol{\Psi}_{2}\right\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
& \left|\boldsymbol{\Downarrow}_{1}\right\rangle\left|\uparrow_{2}\right\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
& \left|\uparrow_{1}\right\rangle\left|\boldsymbol{\Psi}_{2}\right\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
& \left|\uparrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Letting spins interact

Interaction of two spins

$$
H=-J\left(S_{1}^{z} \otimes S_{2}^{Z}\right)
$$

Matrix representation

$$
\begin{aligned}
H & =-J\left(\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right) \otimes\left(\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right) \\
& =-\frac{J}{4}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=-\frac{J}{4}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Calculating an expectation value

Preparation of a state

$$
\begin{aligned}
|\Psi\rangle & =\sqrt{0.5}\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\sqrt{0.5}\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle \\
& =\sqrt{0.5}\left|\uparrow_{1} \downarrow_{2}\right\rangle+\sqrt{0.5}\left|\downarrow_{1} \uparrow_{2}\right\rangle \\
& =\sqrt{0.5}|\uparrow \downarrow\rangle+\sqrt{0.5}|\downarrow \uparrow\rangle \\
& =\left(\begin{array}{c}
0 \\
\sqrt{0.5} \\
\sqrt{0.5} \\
0
\end{array}\right)
\end{aligned}
$$

Calculating an expectation value

Preparation of a state

$$
\begin{aligned}
|\Psi\rangle & =\sqrt{0.5}\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle+\sqrt{0.5}\left|\downarrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle \\
& =\sqrt{0.5}\left|\uparrow_{1} \downarrow_{2}\right\rangle+\sqrt{0.5}\left|\downarrow_{1} \uparrow_{2}\right\rangle \\
& =\sqrt{0.5}|\uparrow \downarrow\rangle+\sqrt{0.5}|\downarrow \uparrow\rangle \\
& =\left(\begin{array}{c}
0 \\
\sqrt{0.5} \\
\sqrt{0.5} \\
0
\end{array}\right)
\end{aligned}
$$

Expectation value

$$
\begin{aligned}
\langle H\rangle & =\langle\Psi| H|\Psi\rangle /\langle\Psi \mid \Psi\rangle \\
& =\langle\Psi| H|\Psi\rangle \\
& =-\frac{J}{4}\left(\begin{array}{llll}
0 & \sqrt{0.5} & \sqrt{0.5} & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\frac{0}{\sqrt{0.5}} \\
\sqrt{0.5} \\
0
\end{array}\right) \\
& =\frac{J}{4}
\end{aligned}
$$

Summary - Introduction

Computation

- Computational complexity of many-body systems scales exponentially with the system size
- We cannot solve those systems exactly and have to use approximate methods

Physics

- Quantum mechanical systems evolve according to the Schrödinger equation
- We are interested in the ground-state $|\Psi\rangle$ and expectation values $\langle E\rangle=\frac{\langle\psi| H|\Psi\rangle}{\langle\psi \mid \psi\rangle}$

Section 2

Matrix Product States

Tensor Networks

Idea

Use an Ansatz with polynomially many parameters although the Hilbert space has exponentially many states

We explore only a small part of the Hilbert space

What is a tensor network?

Pictorial representation

- The number of legs determines the number of indices of the object
- A connection \Leftrightarrow Contraction of indices

Pictorial representation as Arrays

Calculations with pictures

Matrix-Vector Multiplication

$$
\mathbf{v}_{i}=\sum_{i, j} A_{i j} \mathbf{b}_{j}
$$

$$
{ }^{i} \mathrm{v}=\mathrm{i}^{i} \mathrm{~A}
$$

Matrix-Matrix Multiplication

$$
\begin{aligned}
C_{k l} & =\sum_{i, k, l} A_{k i} B_{i l} \\
k C^{\prime} & =k A B^{\prime}
\end{aligned}
$$

Calculations with pictures - Quiz

Calculations with pictures - Quiz

$$
C=A{ }_{j} B
$$

Trace

$$
\begin{aligned}
c & =\sum_{i, j} A_{i j} B_{j i} \\
& =\operatorname{Tr}[A B]
\end{aligned}
$$

Tensor manipulations - Grouping

Tensor to Matrix

Pictorial language

$$
\begin{aligned}
A_{i, j, k} & =A_{i, j k)} \\
& =A_{i, m}
\end{aligned}
$$

Tensor manipulations - Splitting

Splitting of tensor

$$
A=U \cdot S \cdot V^{\dagger}
$$

Singular Value Decomposition

Singular Value Decomposition

$$
\begin{aligned}
& M=U \cdot S \cdot V^{\dagger} \\
& M \text { arbitrary } m x n \text { matrix } \\
& U \text { unitary } m x m \text { matrix } \\
& S \text { diagonal mxn matrix } \\
& V \text { unitary } n x n \text { matrix }
\end{aligned}
$$

SVD - Truncation

The shape of M does not change since we are only manipulating an index which we contract.

SVD - Example

Back to formulas: What is a Tensor Network?

A general quantum mechanical state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Example: $|\psi\rangle=\sqrt{0.5}|\uparrow\rangle| \rangle+\sqrt{0.5}| \rangle|\uparrow\rangle$

$$
\begin{aligned}
& \mathcal{H}=\operatorname{span}\left\{\left|\boldsymbol{\varpi}_{1}\right\rangle\left|\boldsymbol{\varpi}_{2}\right\rangle,\right. \\
&\left|\boldsymbol{\Psi}_{1}\right\rangle\left|\uparrow_{2}\right\rangle, \\
&\left|\uparrow_{1}\right\rangle\left|\downarrow_{2}\right\rangle, \\
&\left.\left|\uparrow_{1}\right\rangle\left|\uparrow_{2}\right\rangle\right\}
\end{aligned}
$$

$$
\begin{aligned}
& c_{\downarrow_{1}, \downarrow_{2}}=0 \\
& c_{\downarrow_{1}, \uparrow_{2}}=\sqrt{0.5} \\
& c_{\uparrow_{1}, \downarrow_{2}}=\sqrt{0.5} \\
& c_{\uparrow_{1}, \uparrow_{2}}=0
\end{aligned}
$$

Back to formulas: What is a Tensor Network?

A general quantum mechanical state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Problem

The coefficients depend on the configuration of all spins. Thus, there are exponentially many coefficients.

Back to formulas: What is a Tensor Network?

A general quantum mechanical state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Problem

The coefficients depend on the configuration of all spins. Thus, there are exponentially many coefficients.

A fancy way to write a quantum mechanical state

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \underbrace{\sum_{a_{n}}}_{c_{a_{1}, \sigma_{2}, \ldots, a_{n}}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Tensor Networks - Thinking about Indices

A Tensor Network State

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{1_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Dimensions of object A

$$
\sigma: \text { physical index: }(\uparrow, \downarrow)
$$

$A_{a_{j}, a_{j+1}}^{\sigma}$
a: virtual index

Dimension of physical index

$$
d \quad(\sim 10)
$$

Dimension of virtual index
D (~100)

Matrix Product States

A Tensor Network State

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

- Dimension: 1D
- Typical quantities
- correlations
- expectation values of observables

Matrix Product States - How to get the Tensors?

A general quantum mechanical state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product state

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product States - How to get the Tensors?

A general quantum mechanical state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product States - How to get the Tensors?

A general quantum mechanical state

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product States - How to get the Tensors?

A general quantum mechanical state

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product state

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{1_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product States - How to get the Tensors?

A general quantum mechanical state

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product state

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{1_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product States - How to get the Tensors?

A general quantum mechanical state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product States - How to get the Tensors?

A general quantum mechanical state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} c_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product state

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

Matrix Product States - Bra, Ket and Norms

Matrix Product States - Why contraction order matters!

Different contraction orders yield different contraction complexities

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D d^{5}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D d^{5}\right)$
- $\mathcal{O}\left(D^{2} d^{2}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D d^{5}\right)$
- $\mathcal{O}\left(D^{2} d^{2}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D d^{5}\right)$
- $\mathcal{O}\left(D^{2} d^{2}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D d^{5}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{2}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D d^{5}\right)$
- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D d^{5}\right)$
- $\mathcal{O}\left(d^{6}\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(D d^{5}\right)$
- $\mathcal{O}\left(D^{2} d^{2}\right)$
- $\mathcal{O}\left(D^{2} d^{3}\right)$
- $\mathcal{O}\left(D^{2} d^{4}\right)$
- $\mathcal{O}\left(\mathrm{Dd}^{5}\right)$
- $\mathcal{O}\left(d^{6}\right)$

! Don't try this at home !

The number of matrix elements needed scales exponentially with the number of sites N.

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}(D d)$

Matrix Product States - Why contraction order matters!

Number of operations

- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}\left(D^{3} d\right)$
- $\mathcal{O}\left(D^{2} d\right)$
- $\mathcal{O}(D d)$

Complexity

The number of matrix elements does not dependent on the number of sites N at all and the procedure scales linear in time with N.

Matrix Product States - Calculation of an expectation value

Expectation values

$$
\begin{aligned}
\langle O\rangle & =\frac{\langle\Psi| O|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \\
\left\langle O_{i}\right\rangle & =\frac{\langle\Psi| O_{i}|\Psi\rangle}{\langle\psi \mid \Psi\rangle}
\end{aligned}
$$

Example - DMRG calculation

Spin 1 Heisenberg chain

$$
H=\sum_{i} S_{i}^{x} S_{i+1}^{X}+S_{i}^{y} S_{i+1}^{y}+S_{i}^{z} S_{i+1}^{z}
$$

Summary - MPS

- MPS is an Ansatz to describe many-body states with polynomially many parameters
- The pictorial description simplifies the formulation of calculations and algorithms
- We have to be careful about the order of contractions

Section 3

iTEBD

Minimization of energy

Goal

Find the groundstate of a Hamiltonian H, i.e. find the state with the smallest energy eigenvalue.

Classical mechanics

Quantum mechanics

Find $\left|\Psi_{\text {min }}\right\rangle$ such that
$E_{\text {min }}=\frac{\left\langle\Psi_{\text {min }}\right| H\left|\Psi_{\text {min }}\right\rangle}{\left\langle\Psi_{\text {min }} \mid \Psi_{\text {min }}\right\rangle}$
is minimal.

Reminder - Tensor network notation

A Tensor Network State

$$
|\Psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{n}} \sum_{a_{1}, \ldots, a_{n-1}} A_{a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} \cdots A_{a_{n-2}, a_{n-1}}^{\sigma_{n-1}} A_{a_{n-1}}^{\sigma_{n}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right\rangle
$$

$$
|\psi\rangle=\xi
$$

$\langle\Psi|=$

Reminder - Calculation of energies

Expectation value

$$
\langle E\rangle=\frac{\langle\varphi|| ||\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

Calculation of an observable

Energy minimization via imaginary time evolution

Motivation

The ground state is the state with the smallest energy. All other states are suppressed more quickly by an exponential.

Time evolution in imaginary time

$$
\begin{aligned}
\left|\Psi_{0}\right\rangle & =\lim _{\delta \rightarrow \infty} \frac{\exp (-H \delta)|\Psi\rangle}{\| \exp (-H \delta)|\Psi\rangle \|} \\
& =\lim _{\delta \rightarrow \infty} \frac{U(\delta)|\Psi\rangle}{\| U(\delta)|\Psi\rangle \|}
\end{aligned}
$$

Trotterization of an operator

Evolution operator

$$
U(\delta)=e^{-\delta H}
$$

Ising Model

$$
H=\sum_{i} S_{i}^{z} S_{i+1}^{z}=\sum_{i} h_{i, i+1}
$$

(〇) (O)
0 O

$$
H_{\text {odd }}=\sum_{i \text { odd }} h_{i, i+1}
$$

Trotterization of an operator

Evolution operator

$$
U(\delta)=e^{-\delta H}
$$

Ising Model

$$
H=\sum_{i} S_{i}^{z} S_{i+1}^{z}=\sum_{i} h_{i, i+1}
$$

(〇) (〇)

$$
H_{\text {even }}=\sum_{i \text { even }} h_{i, i+1} \quad H=H_{\text {even }}+H_{\text {odd }} \quad H_{\text {odd }}=\sum_{i \text { odd }} h_{i, i+1}
$$

Trotterization of an operator

Evolution operator

$$
U(\delta)=e^{-\delta H}
$$

Trotterization of an operator

$$
\begin{aligned}
U(\delta) & =e^{-\delta H} \\
& =e^{-\delta H_{\text {even }}} e^{-\delta H_{\text {odd }}} e^{-\delta^{2}\left[H_{\text {even }}, H_{\text {odd }}\right]} \\
& \approx e^{-\delta H_{\text {even }}} e^{-\delta H_{\text {odd }}}
\end{aligned}
$$

Pictorial representation

Making life easy: infinite systems

General MPS

Translationally invariant MPS

Back to the start: An MPS with diagonal matrices

We started with

and got

The iTEBD algorithm

We start with an infinite system that consists of two sites A and B

Disclaimer

This algorithm is proven to be numerically unstable. You should NOT use it in research, it is shown here due to its simplicity.

The iTEBD algorithm

We start with an infinite system that consists of two sites A and B

Disclaimer

This algorithm is proven to be numerically unstable. You should NOT use it in research, it is shown here due to its simplicity.

The iTEBD algorithm

- Apply the operator U to sites A and B

The iTEBD algorithm

- Apply the operator U to sites A and B
- Contract all indices and group indices (blue and green)

The iTEBD algorithm

- Apply the operator U to sites A and B
- Contract all indices and group indices (blue and green)
- Compute SVD of the tensor

The iTEBD algorithm

- Apply the operator U to sites A and B
- Contract all indices and group indices (blue and green)
- Compute SVD of the tensor
- Reintroduce λ_{B}

The iTEBD algorithm

- Apply the operator U to sites A and B
- Contract all indices and group indices (blue and green)
- Compute SVD of the tensor
- Reintroduce λ_{B}
- Update Γ_{A} and Γ_{B}

The iTEBD algorithm

- Apply the operator U to sites A and B
- Contract all indices and group indices (blue and green)
- Compute SVD of the tensor
- Reintroduce λ_{B}
- Update Γ_{A} and Γ_{B}
- Repeat the procedure with the sites B and A

Application on odd an even sites

Application to even sites

Application to odd sites

Results for an Ising spin system

Ising Model

$$
H=\sum_{i} S_{i}^{z} S_{i+1}^{z}=\sum_{i} h_{i, i+1}
$$

Parameters

- $D=1$
- $\delta=0.001$

Outlook

MERA

Tensor Networks

How physicists can tackle exponentially hard problems

March 4-7, 2019 | Patrick Emonts | Max Planck Institute of Quantum Optics

Section 4

References

References I

Bascis • Jacob C. Bridgeman and Christopher T. Chubb. "Hand-waving and Interpretive Dance: An Introductory Course on Tensor Networks". In: Journal of Physics A: Mathematical and Theoretical 50.22 (June 2, 2017), p. 223001

- Román Orús. "A practical introduction to tensor networks: Matrix product states and projected entangled pair states". In: Annals of Physics 349 (Oct. 2014), pp. 117-158
- Ulrich Schollwöck. "The density-matrix renormalization group in the age of matrix product states". In: Annals of Physics 326.1 (Jan. 2011), pp. 96-192
iTEBD - G. Vidal. "Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension". In: Physical Review Letters 98.7 (Feb. 12, 2007)

