
Ric
HOW CONTAINER ORCHESTRATION

CAN STRENGTHEN
YOUR MICRO-SERVICES

THE APPROACH OF KUBERNETES

Riccardo Poggi

March 2019

march 2019 Riccardo Poggi - iCSC 2019 2

Ric
HOW CONTAINER ORCHESTRATION

CAN STRENGTHEN
YOUR MICRO-SERVICES

THE APPROACH OF KUBERNETES

Riccardo Poggi

March 2019

MICRO-SERVICES
ARCHITECTURE

CONTAINERISED
MICRO-SERVICES CONTAINER

ORCHESTRATION

1 2 3

march 2019 Riccardo Poggi - iCSC 2019 3

Ric
HOW CONTAINER ORCHESTRATION

CAN STRENGTHEN
YOUR MICRO-SERVICES

THE APPROACH OF KUBERNETES

Riccardo Poggi

March 2019

MICRO-SERVICES
ARCHITECTURE

CONTAINERISED
MICRO-SERVICES CONTAINER

ORCHESTRATION

1 2 3

march 2019 Riccardo Poggi - iCSC 2019 4

MONOLITH APPLICATION

● Key aspects
– Single code-base
– Single build system
– Single executable

DATABASE

INVENTORY
ACCOUNT

ACTIVATION

ORDER
STATUS

SHOPPING
CART

USER INTERFACE

APPLICATION

march 2019 Riccardo Poggi - iCSC 2019 5

MICRO-SERVICES

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

MICRO-SERVICES

DATABASE DATABASE

POST

GET

GET

● Key aspects
– Loosely coupled
– Independently deployable
– API service communication

march 2019 Riccardo Poggi - iCSC 2019 6

MICRO-SERVICES
MICRO-SERVICES

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

● Key aspects
– Loosely coupled
– Independently deployable
– API service communication

march 2019 Riccardo Poggi - iCSC 2019 7

FROM SOA TO MICRO-SERVICES

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

CLOUD SERVICE
CONSUMER USER INTERFACE

ENTERPRISE SERVICE BUS

SHIPMENT
SERVICE

DATABASEDATABASE

ORDER
SERVICE

JavaC++

C# Java

march 2019 Riccardo Poggi - iCSC 2019 8

MICRO-SERVICES ARCHITECTURE

● BENEFITS
– Highly scalable
– Resilient
– Easy to deploy
– Accessible
– More open

● CHALLENGES
– Building
– Testing
– Deployment
– Logging
– Monitoring
– Connectivity

march 2019 Riccardo Poggi - iCSC 2019 9

UNEXPECTED FAILURE

Dealing with
unexpected failures
is one of the hardest
problems to solve

especially in a
distributed system

“

”

march 2019 Riccardo Poggi - iCSC 2019 10

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

FAULT-TOLERANCE
● Fault-tolerance

– System able to continue proper
operation in the event of failure of
one or more of its components

● Resilience
● Graceful degradation

– The ability of maintaining
functionality when portions of a
system break down

march 2019 Riccardo Poggi - iCSC 2019 11

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

FAULT-TOLERANCE
● Fault-tolerance

– System able to continue proper
operation in the event of failure of
one or more of its components

● Resilience
● Graceful degradation

– The ability of maintaining
functionality when portions of a
system break down

march 2019 Riccardo Poggi - iCSC 2019 12

HIGH-AVAILABILITY
● Redundancy

– Eliminate single points of failure
– Failure of a component does not

mean failure of the entire system

● Reliable crossover
– Not to have crossover be a single

point of failure

● Monitoring
– Detection of failures as they occur
– A user may never see a failure,

but the maintenance activity must

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

march 2019 Riccardo Poggi - iCSC 2019 13

HIGH-AVAILABILITY
● Redundancy

– Eliminate single points of failure
– Failure of a component does not

mean failure of the entire system

● Reliable crossover
– Not to have crossover be a single

point of failure

● Monitoring
– Detection of failures as they occur
– A user may never see a failure,

but the maintenance activity must

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DB

POST

GET

GET

DB replication

march 2019 Riccardo Poggi - iCSC 2019 14

FAIL-OVER POLICY
● Fail-over policy

– Failure as an unrecoverable critical
issue

– Implementing the behaviour a service
follows in case of its own failure

● Last action before failing
– Does the service holds important data

which needs to be saved?
– Does the service has a configuration

or status which needs to be saved?

● Termination
– “Failure” can also be externally

induced
– Graceful kill (close)

SIGTERMSIGKILL

march 2019 Riccardo Poggi - iCSC 2019 15

SCALABILITY & ELASTICITY

TIME

R
EQ

U
IR

EM
EN

T

Resource allocation

SCALABILITY

● Requirement as a function of time
– Resource allocation and server instantiation

● Scalability
– Increasing the capacity
– The available resources match the current

and future usage plans
– Scaling up: increasing the ability of an

individual server
– Scale out: adding multiple servers

● Elasticity
– Increasing or reducing the capacity based

on the load
– The available resources match the current

demands as closely as possible

march 2019 Riccardo Poggi - iCSC 2019 16

SCALABILITY & ELASTICITY
● Requirement as a function of time

– Resource allocation and server instantiation

● Scalability
– Increasing the capacity
– The available resources match the current

and future usage plans
– Scaling up: increasing the ability of an

individual server
– Scale out: adding multiple servers

● Elasticity
– Increasing or reducing the capacity based

on the load
– The available resources match the current

demands as closely as possible
TIME

R
EQ

U
IR

EM
EN

T

Resource allocation

ELASTICITY

march 2019 Riccardo Poggi - iCSC 2019 17

CONTINUOUS DELIVERY
● Independent deploy
● Without service interruption

– No downtime!

● Rebuild and redeploy
– only one or a small number

of services

New Version

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

DATABASE

SHIPMENT

march 2019 Riccardo Poggi - iCSC 2019 18

CONTINUOUS DELIVERY
● Independent deploy
● Without service interruption

– No downtime!

● Rebuild and redeploy
– only one or a small number

of services

New Version

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

DATABASE

SHIPMENT

march 2019 Riccardo Poggi - iCSC 2019 19

STATEFUL VS. STATELESS
● Stateful

– Possess saved data in a database that
they read from and write to directly

– If it shares DB with other micro-services
less decoupled

– When it terminates it has to save its
state (fail-over policy)

● Stateless
– Handle request and return responses
– All necessary information supplied on

the request and can be forgot after the
response

– No permanent data
– Nothing to save when it terminates

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

march 2019 Riccardo Poggi - iCSC 2019 20

Ric
HOW CONTAINER ORCHESTRATION

CAN STRENGTHEN
YOUR MICRO-SERVICES

THE APPROACH OF KUBERNETES

Riccardo Poggi

March 2019

MICRO-SERVICES
ARCHITECTURE

CONTAINERISED
MICRO-SERVICES CONTAINER

ORCHESTRATION

1 2 3

march 2019 Riccardo Poggi - iCSC 2019 21

CONTAINER

APP

GUEST
OS

HYPERVISOR

HOST OPERATING SYSTEM

RUNTIME

HOST OPERATING SYSTEM

APP APP

RUNTIME

APP
APP

GUEST
OS

APP

GUEST
OS

VIRTUAL MACHINES CONTAINERS

VMs have their own OS kernel, while containers share it with the host OS

march 2019 Riccardo Poggi - iCSC 2019 22

CGROUPS & NAMESPACES

CGROUP NAMESPACES

Cpu, memory, I/O, ... Cgroup, IPC, network, mount, PID, User, ...

march 2019 Riccardo Poggi - iCSC 2019 23

CONTAINER RUNTIME
● Container Runtime

– In a OCI/CNI compatible
version is a daemon process

– Creates and executes a
container

● To fully create a container:
1.Creates the rootfs filesystem.

2.Creates the container
• Set process namespaces and

cgroups

3.Connects the container to a
network

4.Starts the user process

march 2019 Riccardo Poggi - iCSC 2019 24

ENTERS DOCKER

● The most widely known
container runtime is
Docker

● But there are also
others
– rkt, containerd, lxd,

singularity, etc..

march 2019 Riccardo Poggi - iCSC 2019 25

DOCKER IMAGE
● Docker images are built

from a base image
● Base images are built up

using instructions
– Run a command
– Add a file or directory
– Create an environment

variable
– What process to run

when launching a
container from this image

BASE IMAGE : UBUNTU

HOST KERNEL

IMAGE

DOCKER CONTAINER

ADD/COPY

writable

read-only

read-only

read-only

Reference to
parent image

march 2019 Riccardo Poggi - iCSC 2019 26

DOCKERFILE

ORDER

Dockerfile
FROM ubuntu:latest

RUN apt-get update
RUN apt-get install -y python python-pip
RUN pip install Flask

COPY . /app

CMD python /app/order_service.py

$ docker build -t my-image .
$ docker run my-image

march 2019 Riccardo Poggi - iCSC 2019 27

CONTAINERISED MICRO-SERVICES

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

● Apply containers to micro-
services architecture
– One-to-one map for single

independent services container
– Decoupling inside/outside

container

● Questions still to be solved
– Tightly coupled processes

inside one container?
– Everything running on one

single node
– Redundancy and scalability

march 2019 Riccardo Poggi - iCSC 2019 28

CONTAINERISED MICRO-SERVICES

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

● Apply containers to micro-
services architecture
– One-to-one map for single

independent services container
– Decoupling inside/outside

container

● Questions still to be solved
– Tightly coupled processes

inside one container?
– Everything running on one

single node
– Redundancy and scalability

march 2019 Riccardo Poggi - iCSC 2019 29

CONTAINERISED MICRO-SERVICES

DATABASE

INVENTORY

ACCOUNT

ORDERSHIPMENT

USER INTERFACE

DATABASE DATABASE

POST

GET

GET

● Apply containers to micro-
services architecture
– One-to-one map for single

independent services container
– Decoupling inside/outside

container

● Questions still to be solved
– Tightly coupled processes

inside one container?
– Everything running on one

single node
– Redundancy and scalability

NODE

march 2019 Riccardo Poggi - iCSC 2019 30

Ric
HOW CONTAINER ORCHESTRATION

CAN STRENGTHEN
YOUR MICRO-SERVICES

THE APPROACH OF KUBERNETES

Riccardo Poggi

March 2019

MICRO-SERVICES
ARCHITECTURE

CONTAINERISED
MICRO-SERVICES CONTAINER

ORCHESTRATION

1 2 3

march 2019 Riccardo Poggi - iCSC 2019 31

ORCHESTRATION
● Orchestration

– Automated arrangement
– Coordination
– Management

● Useful tool for
– Service Discovery
– Load Balancing
– Health checks
– Auto-scaling
– Zero-downtime deploys
– (And much more...)

march 2019 Riccardo Poggi - iCSC 2019 32

PLATFORM OVERVIEW

APPS

CONTAINER RUNTIME

INFRASTRUCTURE

JOBS SERVICES

ORCHESTRATOR

Container agnostic infrastructure

Local container management

Distributed container management

User workloads

march 2019 Riccardo Poggi - iCSC 2019 33

KUBERNETES
● Master

– The machine that controls
Kubernetes nodes

● Node
– The machines that

perform the requested
and assigned tasks

● Pod
– A group of one or more

containers deployed to a
single node

● kubectl
– Command line

configuration tool for
Kubernetes

HOST

DOCKER

CONTAINERS

POD

CONTAINERS

POD

NODE

HOST OS

KUBERNETES

MASTER

kubectl

DEVOPS

march 2019 Riccardo Poggi - iCSC 2019 34

POD
● A Pod is the basic building block of

Kubernetes
– The smallest and simplest unit

● “one-container-per-Pod”
– Most common Kubernetes use case
– Pod as a wrapper around a single

container

● Encapsulate multiple co-located
containers
– Tightly coupled
– Need to share resources

march 2019 Riccardo Poggi - iCSC 2019 35

REPLICASET
● Kubernetes Controller

– Changes the system to move it
from the current to the desired state

● ReplicaSet
– Ensures that a specified number of

pod replicas are running at any
given time

march 2019 Riccardo Poggi - iCSC 2019 36

DEPLOYMENT
● Deployment controller

– Declarative update for Pods and ReplicaSet

● Rollout
– Ensure max unavailable/surge
– e.g. at least 75% are up (25% max unavailable)

● Roll back

march 2019 Riccardo Poggi - iCSC 2019 37

SERVICE
● Service

– Abstraction to functionally group
Pods

– e.g. Front-end Pods, back-end Pods

● Consistent front for a set of Pods
to offer a given service

● Possible to scale up and down
Pods

march 2019 Riccardo Poggi - iCSC 2019 38

ORCHESTRATED MICRO-SERVICES

DB

SHIP.

POD

SERVICE - SHIP

NODE-A

DB

SHIP.

POD

DB

SHIP.

POD

NODE-B

DB

SHIP.

POD

ORD.

POD

SERVICE - ORD

NODE-A

ORD.

POD

ORD.

POD

NODE-C

ORD.

POD

POST

GET
DB

POD

SERVICE - DB

NODE-E

DB

POD

INV.

POD

SERVICE - INV

NODE-B

INV.

POD

march 2019 Riccardo Poggi - iCSC 2019 39

SUMMARY OF OUR JOURNEY

march 2019 Riccardo Poggi - iCSC 2019 40

SUMMARY OF OUR JOURNEY

MONOLITH
APPLICATION

march 2019 Riccardo Poggi - iCSC 2019 41

SUMMARY OF OUR JOURNEY

MICRO-SERVICES
ARCHITECTURE

MONOLITH
APPLICATION

march 2019 Riccardo Poggi - iCSC 2019 42

SUMMARY OF OUR JOURNEY

MICRO-SERVICES
ARCHITECTURE

CONTAINER

MONOLITH
APPLICATION

march 2019 Riccardo Poggi - iCSC 2019 43

SUMMARY OF OUR JOURNEY

MICRO-SERVICES
ARCHITECTURE

CONTAINER ORCHESTRATION

MONOLITH
APPLICATION

march 2019 Riccardo Poggi - iCSC 2019 44

THE END

Exercise session

Today @16:00

513-1-024 (CERN)

Thank You!

march 2019 Riccardo Poggi - iCSC 2019 45

ACKNOWLEDGEMENTS
Many thanks to all those who helped shaping this lecture and exercises!

● iCSC Mentors:
– Sebastian Lopienski
– Enric Tejedor Saavedra

● CERN IT Support
– Ricardo Brito Da Rocha

● Beta tester:
– Luca Gardi
– Marco Valente

