
Hardware Acceleration
Through FPGAs

2. Basics of VHDL

Giorgio Lopez
CERN TE/EPC/CCE

Summary
• FPGA-based Design Techniques

• VHDL and Design Styles

• Anatomy of an HDL Project / SoC Project

• Importance of Simulation and Testbenches

• Special Signals: Clocks and Resets

• VHDL Signal Types

• Basic Constructs of VHDL

 2

FPGA-based Design Techniques: 
Schematic Entry

To describe user logic in an FPGA it is
possible to manually draw the building
blocks (multiplexers, logic gates,
counters, etc.) and their connections by
using a GUI.

Several disadvantages:
• lack of portability across platforms
• lack of maintainability
• hard to handle for large and complex projects

Not very used anymore, support is dropping.
 3

FPGA-based Design Techniques: 
HDL Languages

• Hardware Description Languages
(HDL) enable a formal description
of the behavior and/or structure
of a digital circuit.

• More scalable, can be managed
with versioning systems

• Most common examples: VHDL
or Verilog

 4

SoC Platform

Processor
Core

FPGA /
User Logic

System Bus

Map / P&RAssembly
Generator

High Level
Synthesis ToolSoftware Compiler

Behavioral C
(to become HW)

Behavioral C
(to stay SW)

FPGA-based Design Techniques: 
High Level Synthesis

• HLS tools enable automatic
translation of blocks from a high level
language (such as C/C++) into an
HDL

• Typical use is in HW/SW partitioned
architectures

• For the implementation to be effective,
though, a deep knowledge of the
tools and a proper constraining of the
translation is needed

HW/SW Partitioning

Specification /  
High Level Algorithm

Memory
 5

VHDL Design Styles
VHDL can be written according to several basic
styles, depending on the used constructs and the
way logic is described. Main styles are:

• Structural VHDL

• Dataflow VHDL

• Behavioral VHDL
 6

VHDL Design Styles:
Structural VHDL

• Structural VHDL
describes the structure
(as in, the components
that are visible in a
structure). The visible
components are
instantiated in the
declarative part of the
architecture body.

architecture structural of mux4to1 is
 component and3
 port(in1,in2,in3 :in std_logic;
 out :in std_logic);
 end component and3;

 component or4
 port(in1,in2,in3,in4 :in std_logic;
 out :in std_logic);
 end component or4;

begin

 A0 : and3 port map(in1 => NOT s0,
 in2 => NOT s1,
 in3 => in0
 out => out0);

 A1 : and3 port map(in1 => s0,
 in2 => NOT s1,
 in3 => in1
 out => out1);

 A2 : and3 port map(in1 => NOT s0,
 in2 => s1,
 in3 => in2
 out => out2);

 A3 : and3 port map(in1 => s0,
 in2 => s1,
 in3 => in3
 out => out3);

 OUT : or4 port map(in1 => out0,
 in2 => out1,
 in3 => out2,
 in4 => out3,
 out => muxout); 7

VHDL Design Styles:
Dataflow VHDL

• In Dataflow VHDL the boolean or arithmetic
transformation applied to data are explicitly
described with signal assignments

• Keep in mind: all  
statements  
are concurrent!

...
architecture dataflow of mux4to1 is

begin

 muxout <= out0 OR out1 OR out2 OR out3;

 out0 <= in0 AND NOT s0 AND NOT s1;
 out1 <= in1 AND s0 AND NOT s1;
 out2 <= in2 AND NOT s0 AND s1;
 out3 <= in3 AND s0 AND s1;

 8

VHDL Design Styles:
Behavioral VHDL

• Behavioral VHDL describes
the operation of the digital
circuit with processes where
concurrent statements are
elaborated in a sequential
way with the control flow
constructs of traditional
programming languages
(if..else.., case.., etc)

...
architecture behavioral of mux4to1 is

begin

 process(S, A0, A1, A2, A3)
 begin
 case S is
 when “00” => muxout <= A0;
 when “01” => muxout <= A1;
 when “10” => muxout <= A2;
 when others => muxout <= A3;
 end case;
 end process;

 9

VHDL Design Styles Recap
• Dataflow can be used for simple units and/or where a higher

visibility of the logical connections between signals is
desirable

• Structural is mainly useful when only an interconnection of
other building blocks is to be put in place (e.g: high
hierarchical level modules)

• Behavioral better describes more complex control flows (e.g:
Finite State Machines)

• Nonetheless, mixed approaches can be used!
 10

Anatomy of an HDL Project

Elements that compose an HDL Project are:

• Modules Hierarchy

• Top Level Entity

• Design Constraints

 11

Modules Hierarchy
• The VHDL modules in a project compose a

“tree” of nested entities which, all together,
implement the user logic.

UART TX INTERFACE
UART FSM

Counter
Shift Reg

Parity
Generator

 12

Top Level Entity
• This is the module that holds all connection with the

“external world”. It wraps all the logic and its inputs and
outputs correspond to the physical IO blocks of the FPGA.

FPGA

Top Level
Entity

Timing Constraints
All complementary information which is needed
for the design to be implemented on the device
according to the timing requirements is put in the
timing constraints. These may include, for
example:

• External and derived clock period
• Timing relationships between externally fed

signals
• Paths to be ignored in the timing analysis
• Multi - cycle signals

And so on…

PROCESSOR CLOCK
NET MCU_BCLK_INT KEEP;
NET MCU_BCLK_INT TNM = TN_MCUBCLK;
TIMESPEC TS_MCUBCLK = PERIOD TN_MCUBCLK 40ns;
NET DSP_EM_CLK_INT KEEP;
NET DSP_EM_CLK_INT TNM = TN_DSPEMCLK;
TIMESPEC TS_DSPEMCLK = PERIOD TN_DSPEMCLK 10ns;

ADC SERIAL CLK
NET FGC3_1/analog_card_inst/ADC_SCK_FB KEEP;
NET FGC3_1/analog_card_inst/ADC_SCK_FB TNM =
TN_ADC_SCK_RB;
TIMESPEC TS_ADC_SCK_RB = PERIOD TN_ADC_SCK_RB 20ns;

NET FGC3_1/CLK_32MHZ KEEP;
NET FGC3_1/CLK_32MHZ TNM = TN_CLOCK_32MHZ;
TIMESPEC TS_CLOCK_32MHZ = PERIOD TN_CLOCK_32MHZ
31.25ns;
[...]

#IGNORE CROSS DOMAIN PATHS BETWEEN CLOCKS
NET "MCU_BCLK_INT" TNM_NET = mcu_grp;
NET "DSP_EM_CLK_INT" TNM_NET = dsp_grp;
NET "FGC3_1/fpgaclock2" TNM_NET = fpga_grp; #GIO
#NET "fpgaclock2" TNM_NET = fpga_grp; #PHIL
NET "FGC3_1/CLK_2MHZ" TNM_NET = 2m_grp;
NET "FGC3_1/CLK_5MHZ" TNM_NET = 5m_grp;
[...]

TIMESPEC TS_01 = FROM "mcu_grp" TO "fpga_grp" TIG;
TIMESPEC TS_02 = FROM "mcu_grp" TO "2m_grp" TIG;
TIMESPEC TS_03 = FROM "mcu_grp" TO "5m_grp" TIG;
TIMESPEC TS_04 = FROM "mcu_grp" TO "16m_grp" TIG;
[...]

 14

I/O Constraints
• These constraints are mainly needed to bind signals to physical

locations on the FPGA

• A typical example are I/O Location Constraints, which assign top
level entity ports to physical IO blocks on the FPGA

• They can also specify other characteristics of the IO signals, e.g.
drive strength, type of electric termination, digital voltage standard

NET "NotLED_VS_BLUE" LOC = P2 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "NotLED_VS_GREEN" LOC = K5 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "NotLED_VS_RED" LOC = P1 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "C62_DIN<0>" LOC = F19 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "C62_DIN<1>" LOC = F20 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "C62_DIN<2>" LOC = F18 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "C62_DIN<3>" LOC = E20 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
NET "DSP_EM_CKE" LOC = B11 | IOSTANDARD = LVCMOS33 | PULLUP ;
NET "DSP_EM_CLK" LOC = A11 | IOSTANDARD = LVCMOS33 | PULLUP ;
NET "DSP_EM_CS0" LOC = G7 | IOSTANDARD = LVCMOS33 | PULLUP ;

Creating a SoC Project

• EDA tools typically offer
graphical interfaces to create
SoC projects based on the
use of IP blocks provided
either by the tool vendor or by
third parties

• Custom created IP blocks
(generated from RTL code) can
then be added and integrated
by using standard interfaces

Custom block from
RTL VHDL code

IP block by
tool vendor

“Soft” CPU core

 16

Creating a SoC Project
• IP blocks can be typically customized

in several aspects to match the
needs of the designer (i.e: CPU
cores can be made more performing
and feature rich or lower in resource
footprint)

• The tools allow easy generation of
the memory map helping the
development of drivers to access the
peripherals from the CPU at the high
abstraction level of the C/C++ code
or the OS

 17

Structure of a
VHDL Module

A VHDL module is characterized by:

• Used libraries declarations

• Entity declaration

• Ports list (input output inout etc.)

• Architecture head and body (entity implementation)

• Other features (generics, multiple architectures, etc.)

library ieee;
use ieee.std_logic_1164.all;
entity toplevel is port (clk : in std_logic; rst : in std_logic; d : in std_logic; q : out std_logic); end toplevel;

architecture rtl of toplevel is signal intern : unsigned(2 downto 0);
begin

 process(clk, rst) begin
…

 18

HDL is not programming!
A very important thing to remember (if not the most).

Typical gotcha: and

yield the same result!

This is because HDL is  
describing logic circuits, not operations!

HDL STATEMENTS ARE CONCURRENT! THINK HARDWARE!

c <= a and b;
f <= d and e;
g <= c or f;

g <= c or f;
c <= a and b;
f <= d and e;

a
b

d
e

c

f
g

 19

Non-Synthesizable VHDL

• Some constructs in VHDL make code non synthesizable.

• A remarkable case: delays

• Another one: loops. Loops in synthesizable VHDL are only use
to replicate logic. For other purposes, use sequential processes

• Nevertheless, non-synthesizable VHDL is ok for testbenches…

• It’s important to know what is synthesizable and what is not

r_Enable <= '0'; wait for 100 ns; r_Enable <= '1';

 20

The importance of
simulation

• One of the biggest problems in dealing with FPGAs is design validation.

• Once the design is deployed on the device access to signals is very
limited

• Only the top level ports

• Test points? Maybe, but how many?

• Internal Logic Analyzers (they occupy resources, modify the
routed design and can break timing)

• Finding bugs can be VERY frustrating and time consuming this way

• Only solution is to use simulation as an integrated part of the design flow
 21

Testbench design
• Testbench design becomes a very important phase of the design flow (comparable to the

development of the actual logic)

• A sophisticated testbench can (and should) include features such as:

• Input randomization (or constrained randomization)

• Assertions for automatic output validation

• File I/O (e.g: to read input vector)

• Code Coverage verification

• Bus transaction modeling

• There are languages and methodologies which are specifically developed with verification
in mind (see SystemVerilog, UVM)…and they are more complex than VHDL itself!

 22

Special Signals Handling:
Clock

Special care must be taken with clock for multiple reasons:

• Clock is fed to an enormous number of Flip Flops: high fanout / need for
careful buffering

• Skew must be kept low (balanced clock trees)

All this is taken care by the tools almost transparently. But still:

• Remember to constraint accurately

• Avoid “playing” with clock (e.g: don’t use gating, there are other ways to
obtain the same effect)

• Typically, there can be more than a single clock in a design: watch out for
domain boundaries!

 23

Special Signals Handling:
Reset - 1

Reset can be either synchronous or asynchronous:

• Synchronous reset takes effect on next clock
edge and is treated by synthesizer as any other
synchronous signal (timing closure takes care of
correctness of reset propagation)

• Asynchronous reset is instantaneous and takes
effect regardless of the presence of clock edges

 24

Special Signals Handling:
Reset - 2

Since asynchronous resets are not handled by timing closure, special
care must be taken with their use for multiple reasons:

• Asynchronous resets should be kept active for a sufficient time to make
sure they propagate correctly to all circuits

• De-assertion of an asynchronous reset should be simultaneous across
device to avoid state to progress in some areas while some other are
still being kept reset

• Typical choice is to use some additional logic to de-assert the
asynchronous reset synchronously with clock edge

 25

Signal Types in VHDL - 1
• std_logic : represents a single bit of information.

It can be “0” or “1” but also hold other states:
the most common are “X” for unknown, “U” for
unresolved and “Z” for high impedance (they are
typically useful when simulating).

signal flag : std_logic;

flag <= ‘0’;

 26

Signal Types in VHDL - 2
• std_logic_vector : represents an array of

std_logic and can be used for buses.

signal data_bus : std_logic_vector(7 downto 0);

data_bus <= “01001001”;

data_bus <= x”FA”;

data_bus(1) <= ‘1’;

data_bus(3 downto 0) <= “0101”;

 27

Signal Types in VHDL - 3
When dealing with arithmetic operations, it’s most
convenient to use the Unsigned and Signed
types (according to the type of data/operation)

• Part of ieee.numeric_std package

• Sign extension is taken care of automatically

• Anyway VHDL will whine if you don’t
 28

Signal Types in VHDL - 4

• Arrays are custom types that can typically be
used to represent blocks of memory

type memory16x32 is array(0 to 15) of \
 std_logic_vector(31 downto 0);

signal memblock : memory16x32;

memblock(12) <= x“5A5A”;

 29

Signal Casting in VHDL
• VHDL is strongly typed: if assignments have different signal

types on the two sides the synthesizer will issue an error.

• Casting from one type to another is necessary

signal data_bus : std_logic_vector(3 downto 0);
signal operand : unsigned(3 downto 0);

operand <= unsigned(data_bus);

• Recommendation: use std_logic/std_logic_vector for
entity ports

 30

Basic Constructs of VHDL

• Signals and Assignations

• Processes and Variables

• When .. else statement

• Case statement

 31

Signals and Assignations

• Assignations describe the
physical connections
between signals

• They can be simple wires
or describe more complex
structures like logic gates
or multiplexers/LUTs

x_test <= test_in;

z <= a OR (b AND c) OR d;

muxout <= in0 when s = ‘0’ else
 in1;

lut_q <= “1000” when s = “100” else
 “0100” when s = “011” else
 “0010” when s = “010” else
 “0001” when s = “001” else
 “0000”;

 32

Processes and Variables
• Processes are used to describe in a higher level of abstraction

combinatorial or sequential logic. They are activated when a state
change happens on any of the signals in their “sensitivity list”:

process(S, A0, A1, A2, A3)
begin
 case S is
 when “00” => muxout <= A0;
 when “01” => muxout <= A1;
 when “10” => muxout <= A2;
 when others => muxout <= A3;
 end case;
end process;

• Sequential processes: only clock signal
(and asynchronous sets/resets, if
present)

• Combinatorial processes: all signals
which appear on the right hand side of
an assignment

process(clk, rst)
begin
 if rst = ‘1’ then
 q <= ‘0’;
 elsif rising_edge(clk) then
 q <= d;
 end if;
end process;

 33

Again, the classic HDL trap!
• Classic programming statements can be used in processes,

but this is NOT programming: the statements, in order, are all
scheduled to happen at the end of the process

process(clk) is
begin
 if rising_edge(clk) then
 a <= b;
 b <= c;
 c <= a;
 a <= c;
 end if;
end process;

• In this process, the first
assignment never happens,
and in the third and fourth
assignments “c” and “a” get
assigned the “old” (before
the clock edge) values of
“a” and “c” respectively

Case statement
• Used in processes

• Similar in structure and syntax as in
programming languages

• Typically used for Finite State
Machines

• It’s very important to specify values of
outputs for all cases (doing the
opposite may result in latches).

-- Default output assignments
adc_cnv_o <= '0';
adc_clk_tick_timer_en <= '0';
adc_clk_tick_timer_pre <= '1';
acq_msb_timer_en <= '0';
cnv_h_timer_en <= '0';
data_en_o <= '0';
case cur_state is
 when IDLE =>
 if en_i = '1' then
 next_state <= CNV_H;
 end if;
 when CNV_H =>
 if cnv_h_elapsed = ‘1' then
 next_state <= CNV_L;
 end if;
 adc_cnv_o <= '1';
 acq_msb_timer_en <= '1';
 cnv_h_timer_en <= '1';
 when CNV_L =>
 if acq_msb_elapsed = '1' then
 next_state <= CLK_TOGGLE;
 end if;
 acq_msb_timer_en <= '1';
 when CLK_TOGGLE =>
 if clk_pulse_train_over = '1' then
 next_state <= READY;
 end if;
 adc_clk_tick_timer_en <= '1';
 adc_clk_tick_timer_pre <= '0';
 when READY =>
 if en_i = '1' then
 next_state <= CNV_H;
 end if;
 data_en_o <= '1';
 when OTHERS =>
 next_state <= IDLE;
end case;

 35

A trap to avoid: incomplete
case (or if) statements

• If we remove the default assignments to
outputs, the synthesizer won’t know what
to do with outputs that are unspecified for
given cases

• They will keep their value, generating a
register in a sequential process

• In a combinatorial process, though, this
creates unwanted “latches” (which are
bad practice for FPGA design, in general).

case cur_state is
 when IDLE =>
 if en_i = '1' then
 next_state <= CNV_H;
 end if;
 when CNV_H =>
 if cnv_h_elapsed = ‘1' then
 next_state <= CNV_L;
 end if;
 adc_cnv_o <= '1';
 acq_msb_timer_en <= '1';
 cnv_h_timer_en <= '1';
 when CNV_L =>
 if acq_msb_elapsed = '1' then
 next_state <= CLK_TOGGLE;
 end if;
 acq_msb_timer_en <= '1';
 when CLK_TOGGLE =>
 if clk_pulse_train_over = '1' then
 next_state <= READY;
 end if;
 adc_clk_tick_timer_en <= '1';
 adc_clk_tick_timer_pre <= '0';
 when READY =>
 if en_i = '1' then
 next_state <= CNV_H;
 end if;
 data_en_o <= '1';
 when OTHERS =>
 next_state <= IDLE;
end case;

 36

Take Home Messages
• HDLs are not programming languages. They are a tool to

describe digital logic circuits.

• Watch Out for Non-Synthesizable Code and for the traps
of a “programmer mindset”

• Simulation is essential! Writing good testbenches is as
important as writing good logic.

• Handle adequately resets and clock signals
 37

