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FPGA-based Design Techniques: 
Schematic Entry

To describe user logic in an FPGA it is 
possible to manually draw the building 
blocks (multiplexers, logic gates, 
counters, etc.) and their connections by 
using a GUI.

Several disadvantages:  
• lack of portability across platforms 
• lack of maintainability 
• hard to handle for large and complex projects 

Not very used anymore, support is dropping.
 3



FPGA-based Design Techniques: 
HDL Languages

• Hardware Description Languages 
(HDL) enable a formal description 
of the behavior and/or structure 
of a digital circuit. 

• More scalable, can be managed 
with versioning systems 

• Most common examples: VHDL 
or Verilog
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FPGA-based Design Techniques: 
High Level Synthesis

• HLS tools enable automatic 
translation of blocks from a high level 
language (such as C/C++) into an 
HDL 
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• For the implementation to be effective, 
though, a deep knowledge of the 
tools and a proper constraining of the 
translation is needed
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VHDL Design Styles
VHDL can be written according to several basic 
styles, depending on the used constructs and the 
way logic is described. Main styles are: 

• Structural VHDL 

• Dataflow VHDL 

• Behavioral VHDL
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VHDL Design Styles: 
Structural VHDL

• Structural VHDL 
describes the structure 
(as in, the components 
that are visible in a 
structure). The visible 
components are 
instantiated in the 
declarative part of the 
architecture body.

architecture structural of mux4to1 is 
    component and3  
    port( in1,in2,in3 :in std_logic; 
          out :in std_logic); 
    end component and3; 

    component or4  
    port( in1,in2,in3,in4 :in std_logic; 
          out :in std_logic); 
    end component or4; 

begin 

   A0 : and3 port map( in1 => NOT s0, 
                       in2 => NOT s1, 
                       in3 => in0 
                       out => out0); 

   A1 : and3 port map( in1 => s0, 
                       in2 => NOT s1, 
                       in3 => in1 
                       out => out1); 

   A2 : and3 port map( in1 => NOT s0, 
                       in2 => s1, 
                       in3 => in2 
                       out => out2); 
                         

   A3 : and3 port map( in1 => s0, 
                       in2 => s1, 
                       in3 => in3 
                       out => out3); 

   OUT : or4 port map( in1 => out0, 
                       in2 => out1, 
                       in3 => out2, 
                       in4 => out3, 
                       out => muxout);  7



VHDL Design Styles: 
Dataflow VHDL

• In Dataflow VHDL the boolean or arithmetic 
transformation applied to data are explicitly 
described with signal assignments 

• Keep in mind: all  
statements  
are concurrent!

... 
architecture dataflow of mux4to1 is 
    
begin 

   muxout <= out0 OR out1 OR out2 OR out3; 

   out0 <= in0 AND NOT s0 AND NOT s1; 
   out1 <= in1 AND     s0 AND NOT s1; 
   out2 <= in2 AND NOT s0 AND     s1; 
   out3 <= in3 AND     s0 AND     s1;
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VHDL Design Styles: 
Behavioral VHDL

• Behavioral VHDL describes 
the operation of the digital 
circuit with processes where 
concurrent statements are 
elaborated in a sequential 
way with the control flow 
constructs of traditional 
programming languages 
(if..else.., case.., etc) 

... 
architecture behavioral of mux4to1 is 
    
begin 

    process(S, A0, A1, A2, A3) 
    begin 
        case S is 
            when “00”   => muxout <= A0; 
            when “01”   => muxout <= A1; 
            when “10”   => muxout <= A2; 
            when others => muxout <= A3; 
        end case; 
    end process; 

 9



VHDL Design Styles Recap
• Dataflow can be used for simple units and/or where a higher 

visibility of the logical connections between signals is 
desirable 

• Structural is mainly useful when only an interconnection of 
other building blocks is to be put in place (e.g: high 
hierarchical level modules) 

• Behavioral better describes more complex control flows (e.g: 
Finite State Machines) 

• Nonetheless, mixed approaches can be used!
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Anatomy of an HDL Project

Elements that compose an HDL Project are: 

• Modules Hierarchy 

• Top Level Entity 

• Design Constraints
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Modules Hierarchy
• The VHDL modules in a project compose a 

“tree” of nested entities which, all together, 
implement the user logic.

UART TX INTERFACE
UART FSM

Counter
Shift Reg

Parity
Generator
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Top Level Entity
• This is the module that holds all connection with the 

“external world”. It wraps all the logic and its inputs and 
outputs correspond to the physical IO blocks of the FPGA.

FPGA

Top Level
Entity



Timing Constraints
All complementary information which is needed 
for the design to be implemented on the device 
according to the timing requirements is put in the 
timing constraints. These may include, for 
example: 

• External and derived clock period 
• Timing relationships between externally fed 

signals 
• Paths to be ignored in the timing analysis 
• Multi - cycle signals 

And so on…

# PROCESSOR CLOCK 
NET MCU_BCLK_INT KEEP; 
NET MCU_BCLK_INT TNM = TN_MCUBCLK; 
TIMESPEC TS_MCUBCLK = PERIOD TN_MCUBCLK 40ns; 
NET DSP_EM_CLK_INT KEEP; 
NET DSP_EM_CLK_INT TNM = TN_DSPEMCLK; 
TIMESPEC TS_DSPEMCLK = PERIOD TN_DSPEMCLK 10ns; 

# ADC SERIAL CLK 
NET FGC3_1/analog_card_inst/ADC_SCK_FB KEEP; 
NET FGC3_1/analog_card_inst/ADC_SCK_FB TNM = 
TN_ADC_SCK_RB; 
TIMESPEC TS_ADC_SCK_RB = PERIOD TN_ADC_SCK_RB 20ns; 

NET FGC3_1/CLK_32MHZ KEEP; 
NET FGC3_1/CLK_32MHZ TNM = TN_CLOCK_32MHZ; 
TIMESPEC TS_CLOCK_32MHZ = PERIOD TN_CLOCK_32MHZ 
31.25ns; 
[...] 

#IGNORE CROSS DOMAIN PATHS BETWEEN CLOCKS 
NET "MCU_BCLK_INT" TNM_NET = mcu_grp; 
NET "DSP_EM_CLK_INT" TNM_NET = dsp_grp; 
NET "FGC3_1/fpgaclock2" TNM_NET = fpga_grp; #GIO 
#NET "fpgaclock2" TNM_NET = fpga_grp;  #PHIL 
NET "FGC3_1/CLK_2MHZ" TNM_NET = 2m_grp; 
NET "FGC3_1/CLK_5MHZ" TNM_NET = 5m_grp; 
[...] 

TIMESPEC TS_01 = FROM "mcu_grp" TO "fpga_grp" TIG; 
TIMESPEC TS_02 = FROM "mcu_grp" TO "2m_grp" TIG; 
TIMESPEC TS_03 = FROM "mcu_grp" TO "5m_grp" TIG; 
TIMESPEC TS_04 = FROM "mcu_grp" TO "16m_grp" TIG; 
[...]
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I/O Constraints
• These constraints are mainly needed to bind signals to physical 

locations on the FPGA 

• A typical example are I/O Location Constraints, which assign top 
level entity ports to physical IO blocks on the FPGA 

• They can also specify other characteristics of the IO signals, e.g. 
drive strength, type of electric termination, digital voltage standard

NET "NotLED_VS_BLUE"         LOC = P2   | IOSTANDARD = LVCMOS33  | SLEW = SLOW | DRIVE =  8 ; 
NET "NotLED_VS_GREEN"        LOC = K5   | IOSTANDARD = LVCMOS33  | SLEW = SLOW | DRIVE =  8 ; 
NET "NotLED_VS_RED"          LOC = P1   | IOSTANDARD = LVCMOS33  | SLEW = SLOW | DRIVE =  8 ; 
NET "C62_DIN<0>"             LOC = F19  | IOSTANDARD = LVCMOS33  | SLEW = SLOW | DRIVE =  8 ; 
NET "C62_DIN<1>"             LOC = F20  | IOSTANDARD = LVCMOS33  | SLEW = SLOW | DRIVE =  8 ; 
NET "C62_DIN<2>"             LOC = F18  | IOSTANDARD = LVCMOS33  | SLEW = SLOW | DRIVE =  8 ; 
NET "C62_DIN<3>"             LOC = E20  | IOSTANDARD = LVCMOS33  | SLEW = SLOW | DRIVE =  8 ; 
NET "DSP_EM_CKE"             LOC = B11  | IOSTANDARD = LVCMOS33  | PULLUP ; 
NET "DSP_EM_CLK"             LOC = A11  | IOSTANDARD = LVCMOS33  | PULLUP ; 
NET "DSP_EM_CS0"             LOC = G7   | IOSTANDARD = LVCMOS33  | PULLUP ;



Creating a SoC Project

• EDA tools typically offer 
graphical interfaces to create 
SoC projects based on the 
use of IP blocks provided 
either by the tool vendor or by 
third parties 

• Custom created IP blocks 
(generated from RTL code) can 
then be added and integrated 
by using standard interfaces

Custom block from
RTL VHDL code

IP block by 
tool vendor

“Soft” CPU core
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Creating a SoC Project
• IP blocks can be typically customized 

in several aspects to match the 
needs of the designer (i.e: CPU 
cores can be made more performing 
and feature rich or lower in resource 
footprint) 

• The tools allow easy generation of 
the memory map helping the 
development of drivers to access the 
peripherals from the CPU at the high 
abstraction level of the C/C++ code 
or the OS

 17



Structure of a  
VHDL Module

A VHDL module is characterized by: 

• Used libraries declarations 

• Entity declaration 

• Ports list (input output inout etc.) 

• Architecture head and body (entity implementation) 

• Other features (generics, multiple architectures, etc.)

library ieee; 
use ieee.std_logic_1164.all; 
entity toplevel is     port (clk : in  std_logic;           rst : in  std_logic;           d   : in  std_logic;           q   : out std_logic); end toplevel; 

architecture rtl of toplevel is     signal intern : unsigned(2 downto 0); 
begin 

    process(clk, rst)         begin 
…
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HDL is not programming!
A very important thing to remember (if not the most). 

Typical gotcha:                           and 

yield the same result! 

This is because HDL is  
describing logic circuits, not operations!

HDL STATEMENTS ARE CONCURRENT! THINK HARDWARE!

c <= a and b; 
f <= d and e; 
g <= c or f;

g <= c or f; 
c <= a and b; 
f <= d and e;

a
b

d
e

c

f
g
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Non-Synthesizable VHDL

• Some constructs in VHDL make code non synthesizable. 

• A remarkable case: delays 

• Another one: loops. Loops in synthesizable VHDL are only use 
to replicate logic. For other purposes, use sequential processes 

• Nevertheless, non-synthesizable VHDL is ok for testbenches… 

• It’s important to know what is synthesizable and what is not

r_Enable <= '0'; wait for 100 ns; r_Enable <= '1';
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The importance of 
simulation

• One of the biggest problems in dealing with FPGAs is design validation. 

• Once the design is deployed on the device access to signals is very 
limited  

• Only the top level ports 

• Test points? Maybe, but how many? 

• Internal Logic Analyzers (they occupy resources, modify the 
routed design and can break timing) 

• Finding bugs can be VERY frustrating and time consuming this way 

• Only solution is to use simulation as an integrated part of the design flow
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Testbench design
• Testbench design becomes a very important phase of the design flow (comparable to the 

development of the actual logic) 

• A sophisticated testbench can (and should) include features such as: 

• Input randomization (or constrained randomization) 

• Assertions for automatic output validation 

• File I/O (e.g: to read input vector) 

• Code Coverage verification 

• Bus transaction modeling  

• There are languages and methodologies which are specifically developed with verification 
in mind (see SystemVerilog, UVM)…and they are more complex than VHDL itself!
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Special Signals Handling: 
Clock

Special care must be taken with clock for multiple reasons: 

• Clock is fed to an enormous number of Flip Flops: high fanout / need for 
careful buffering 

• Skew must be kept low (balanced clock trees) 

All this is taken care by the tools almost transparently. But still: 

• Remember to constraint accurately  

• Avoid “playing” with clock (e.g: don’t use gating, there are other ways to 
obtain the same effect) 

• Typically, there can be more than a single clock in a design: watch out for 
domain boundaries!
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Special Signals Handling: 
Reset - 1

Reset can be either synchronous or asynchronous: 

• Synchronous reset takes effect on next clock 
edge and is treated by synthesizer as any other 
synchronous signal (timing closure takes care of 
correctness of reset propagation) 

• Asynchronous reset is instantaneous and takes 
effect regardless of the presence of clock edges
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Special Signals Handling: 
Reset - 2

Since asynchronous resets are not handled by timing closure, special 
care must be taken with their use for multiple reasons: 

• Asynchronous resets should be kept active for a sufficient time to make 
sure they propagate correctly to all circuits 

• De-assertion of an asynchronous reset should be simultaneous across 
device to avoid state to progress in some areas while some other are 
still being kept reset 

• Typical choice is to use some additional logic to de-assert the 
asynchronous reset synchronously with clock edge
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Signal Types in VHDL - 1
• std_logic : represents a single bit of information. 

It can be “0” or “1” but also hold other states: 
the most common are “X” for unknown, “U” for 
unresolved and “Z” for high impedance (they are 
typically useful when simulating).

signal flag : std_logic; 

flag <= ‘0’;
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Signal Types in VHDL - 2
• std_logic_vector : represents an array of 

std_logic and can be used for buses.

signal data_bus : std_logic_vector(7 downto 0); 

data_bus <= “01001001”; 

data_bus <= x”FA”; 

data_bus(1) <= ‘1’; 

data_bus(3 downto 0) <= “0101”;
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Signal Types in VHDL - 3
When dealing with arithmetic operations, it’s most 
convenient to use the Unsigned and Signed 
types (according to the type of data/operation) 

• Part of ieee.numeric_std package 

• Sign extension is taken care of automatically 

• Anyway VHDL will whine if you don’t
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Signal Types in VHDL - 4

• Arrays are custom types that can typically be 
used to represent blocks of memory 

type memory16x32 is array(0 to 15) of \ 
                     std_logic_vector(31 downto 0);  

signal memblock : memory16x32; 

memblock(12) <= x“5A5A”;
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Signal Casting in VHDL
• VHDL is strongly typed: if assignments have different signal 

types on the two sides the synthesizer will issue an error. 

• Casting from one type to another is necessary

signal data_bus : std_logic_vector(3 downto 0); 
signal operand : unsigned(3 downto 0); 

operand <= unsigned(data_bus);

• Recommendation: use std_logic/std_logic_vector for 
entity ports
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Basic Constructs of VHDL

• Signals and Assignations 

• Processes and Variables 

• When .. else statement 

• Case statement
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Signals and Assignations

• Assignations describe the 
physical connections 
between signals 

• They can be simple wires 
or describe more complex 
structures like logic gates 
or multiplexers/LUTs

x_test <= test_in;  

z <= a OR (b AND c) OR d; 

muxout <= in0 when s = ‘0’ else 
          in1;   

lut_q <= “1000” when s = “100” else 
         “0100” when s = “011” else 
         “0010” when s = “010” else 
         “0001” when s = “001” else 
         “0000”;     
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Processes and Variables
• Processes are used to describe in a higher level of abstraction 

combinatorial or sequential logic. They are activated when a state 
change happens on any of the signals in their “sensitivity list”:

process(S, A0, A1, A2, A3) 
begin 
    case S is 
        when “00”   => muxout <= A0; 
        when “01”   => muxout <= A1; 
        when “10”   => muxout <= A2; 
        when others => muxout <= A3; 
    end case; 
end process; 

• Sequential processes: only clock signal 
(and asynchronous sets/resets, if 
present) 

• Combinatorial processes: all signals 
which appear on the right hand side of 
an assignment

process(clk, rst) 
begin 
    if rst = ‘1’ then 
        q <= ‘0’; 
    elsif rising_edge(clk) then 
        q <= d; 
    end if;  
end process; 
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Again, the classic HDL trap!
• Classic programming statements can be used in processes, 

but this is NOT programming: the statements, in order, are all 
scheduled to happen at the end of the process

process(clk) is 
begin 
    if rising_edge(clk) then 
        a <= b; 
        b <= c; 
        c <= a; 
        a <= c; 
    end if; 
end process;

• In this process, the first 
assignment never happens, 
and in the third and fourth 
assignments “c” and “a” get 
assigned the “old” (before 
the clock edge) values of 
“a” and “c” respectively



Case statement
• Used in processes 

• Similar in structure and syntax as in 
programming languages 

• Typically used for Finite State 
Machines 

• It’s very important to specify values of 
outputs for all cases (doing the 
opposite may result in latches).

-- Default output assignments 
adc_cnv_o              <= '0'; 
adc_clk_tick_timer_en  <= '0'; 
adc_clk_tick_timer_pre <= '1'; 
acq_msb_timer_en       <= '0'; 
cnv_h_timer_en         <= '0'; 
data_en_o              <= '0'; 
case cur_state is 
    when IDLE => 
        if en_i = '1' then 
            next_state <= CNV_H; 
        end if; 
    when CNV_H => 
        if cnv_h_elapsed = ‘1' then 
            next_state <= CNV_L; 
        end if; 
        adc_cnv_o        <= '1'; 
        acq_msb_timer_en <= '1'; 
        cnv_h_timer_en   <= '1'; 
    when CNV_L => 
        if acq_msb_elapsed = '1' then 
            next_state <= CLK_TOGGLE; 
        end if; 
        acq_msb_timer_en <= '1'; 
    when CLK_TOGGLE => 
        if clk_pulse_train_over = '1' then 
            next_state <= READY; 
        end if; 
        adc_clk_tick_timer_en  <= '1'; 
        adc_clk_tick_timer_pre <= '0'; 
    when READY => 
        if en_i = '1' then 
            next_state <= CNV_H; 
        end if; 
        data_en_o <= '1'; 
    when OTHERS => 
        next_state <= IDLE; 
end case;

 35



A trap to avoid: incomplete 
case (or if) statements

• If we remove the default assignments to 
outputs, the synthesizer won’t know what 
to do with outputs that are unspecified for 
given cases 

• They will keep their value, generating a 
register in a sequential process 

• In a combinatorial process, though, this 
creates unwanted “latches” (which are 
bad practice for FPGA design, in general).

case cur_state is 
    when IDLE => 
        if en_i = '1' then 
            next_state <= CNV_H; 
        end if; 
    when CNV_H => 
        if cnv_h_elapsed = ‘1' then 
            next_state <= CNV_L; 
        end if; 
        adc_cnv_o        <= '1'; 
        acq_msb_timer_en <= '1'; 
        cnv_h_timer_en   <= '1'; 
    when CNV_L => 
        if acq_msb_elapsed = '1' then 
            next_state <= CLK_TOGGLE; 
        end if; 
        acq_msb_timer_en <= '1'; 
    when CLK_TOGGLE => 
        if clk_pulse_train_over = '1' then 
            next_state <= READY; 
        end if; 
        adc_clk_tick_timer_en  <= '1'; 
        adc_clk_tick_timer_pre <= '0'; 
    when READY => 
        if en_i = '1' then 
            next_state <= CNV_H; 
        end if; 
        data_en_o <= '1'; 
    when OTHERS => 
        next_state <= IDLE; 
end case;
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Take Home Messages
• HDLs are not programming languages. They are a tool to 

describe digital logic circuits. 

• Watch Out for Non-Synthesizable Code and for the traps 
of a “programmer mindset” 

• Simulation is essential! Writing good testbenches is as 
important as writing good logic. 

• Handle adequately resets and clock signals
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