Hardware Acceleration
Through FPGAs

2 masicsier Vil

Giorgio Lopez
CERN TE/EPC/CCE



Summary

FPGA-based Design Technigues

VHDL and Design Styles

Anatomy of an HDL Project / SoC Project
Importance of Simulation and Testbenches
Special signals: Clocks and Resets

VHDL Signal Types

E e Ceneilcts of VHDL



FPGA-based Design Techniques:

Schematic Entry

0 describe user logic in an FPGA 1t is
possible to manually draw the bullding

[fin >

pblocks (multiplexers, logic gates, L D | D/@

BelRlEISRElc. ) and thelr conngetighs oy . -
using a GUI.

Several disadvantages:

e |[ack of maintanability
e hard to handle for large and complex projects

Not very used anymore, support is dropping.

3

* |lack of portapility across platiorms | e




FPGA-based Design Techniques:
HDL Languages

on Languages i
2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

 Hardware Descript
(HDL) enable a formal description =y soms

6
e
8

aclr : in std_logic;

of the behavior and/or structure @ & o aaews

11 b Al std_logic_vector;

r 1 1 1 1 12 q : out std_logic_vector

of a digital circuit i
1 14 end signed_adder;
15
16 architecture signed_adder_arch of signed_adder is
17 signal q_s : signed(a'high+1 downto 0); -- extra bit wide
18
19 begin -- architecture
sl [Ofc scalaple, capfioe Managedl 2 =maims s
) 21 report "Port A must be the longer vector if different sizes!"

22 severity FAILURE;

23 g <= std_logic_vector(q_s);

with versioning systems i

26 process (aclr, clk)
27 begin

28 if (aclr = '1') then
29 g_s <= (others => '0');
30 elsif risiqgjedge(clk) then A=) ]
* Most common examples: VDL - & st o e
end process;

34

1
Or \/erl |Og 35 end signed_adder_arch;



FPGA-based Design Techniques:
High Level Synthesis

| Specification /
e HLS tools enable automatic High Level Algorithm

translation of blocks from a high level

anguage (such as C/C++) into an
D

HW/SWV Partitioning

Behavioral C Behavioral C
(to stay SW) (to become HW)

* lypical use is In HW/SW partitioned

architectures High Level

Software Compiler Synthesis Tool

e For the Implementation to be etfective, Assermbly

though, a deep knowledge of the Generator PR
tools and a proper constraining of the SoC Platform
raﬂ8|aJ[IOﬂ |S ﬂ@@d@d Processor >rstem Bus FPGA /

Core User Logic
Memory




VHDL Design Styles

DI can e written accordingite several oasic
Styles, depending on the used constructs and the
way logic Is descripbed. Main styles are:

oR Strtictural VHDL

e Dataflow VHDL

e Benavioral VHDL




VHDL Design Styles:
Structural VHDL

e Structural VHDL
describes the structure s s
(@as in, the components
that are visible In a
structure). The visible
components are
nstantiated in the
declarative part of the
architecture poay:.

inl
in2
in3

ut
inl
in2
in3

ut
inl
in2
in3

ut
inl
in2
in3

ut
inl
in2
in3
ind

ut



VHDL Design Styles:
Dataflow VHDL

e |n Dataflow VHDL the boolean or arthmetic
transformation applied to data are explicitly
described with signal assignments

O Keep |q mind: aH dataflow mux4tol
Statements
el enCUgeNt!

muxout <= out0 outl out2 out3;

out0 <= 1i
outl <= i
out2 <=

out3 <= 1




VHDL Design Styles:
Behavioral VHDL

Senhavioral VHDL describes
the operation of the digita
circuit with processes where

behavioral mux4tol

e elIeit sieemeniggare &, £, 7o, 7, RE
elaborated in a seguential sis
way with the control flow 10" = miout <= AZ,

=> muxout <= A3;

constructs of traditional
orogramming languages
(if..else.., case.., etc)




VHDL Design Styles Recap

Dataflow can be used for simple units and/or where a higher
visibility of the logical connections between signals is
desirable

Structural is mainly useful when only an interconnection of
other building blocks is to be put in place (e.g: high
hierarchical level modules)

Behavioral better describes more complex control flows (e.g:
Finite State Machines)

Nonetheless, mixed approaches can be used!

10



Anatomy of an HDL Project

e Modules Hierarchy

e JOp Leve

—lements that compose an H

—Ntity

e Design Constraints

! e | [= BF'§
liew: @ @Implementation Simulaﬁon
Hierarchy n
S clic_acquisition
(S35 | x<65br150t-3fgg900
( ol clic_top - structyral (H:\user\g\glopez\git\ s
safe _pb_reset_SO_gen - reset_generator -
safe _pb_reset_gt_gen - reset_generator -t
safe _pb_reset_300_gen - reset_generator - | 3
a nc_trigger_to_300MHz_inst - external_in

delay_inst - delay - rt| (H:\user\g\glop

['ng glitch_filter_inst - glitch filter - rtl (1,

=} sync_trigger_to_SOMHanst~ &dernal_inp
delay_inst - delay - rt| (H:\user\g\glop

['tg] €nv_3MHz_masker - simple_counter - pep
& ﬂ clvc_core_inst - clic_core - structural (H:\y. -
] ——— »
)

D Running: Place &Route

Processes; clic_top - structural |4

p >4 Design Summary/Reports
=] y Design Utilities
) Create Schematic Symbo)
View Commang Line Log File
View HDL Instantiation Template
# y User Constraints
8 4\ Synthesize - XST
EF- @) Implement Design
# C4\ Translate
= O Map
= Q€ Places Route
2@ Generate Post-Place & Route Static ..,
€]  Analyze Timing / Floorplan Design (...
View/Edit Routed Design (FPGA Edit...
Analyze Power Distribution (XPower ..
Generate Text Power Report

m

“roject are:

] S veIgnoverview -

w Summary 1l |

[8) 108 Properties |

[2) Module Leve) Utiliza... | |||
Timing Constraints

0O Pinout Report

[} Clock Report

™ @ Static Timing |

dic_acquvsmon.xnse

=+ Errors ang Warnings |
;E 2 Parser Messages | | Design Strategy: | yiin. Default (uniocked)
0 [2 Synthesis Messages [ System Settings

[2) Translation Messages
B Map Messages |
[2) Place and Route Me...

[2) Timing Messages

Device

B Synthesis Report
[2) Transiation Report Number used as Latches
2 Map Report Number used as Latch-thrus

Place and Route Re...

Post-PAR Static Tim;.. Number used as AND/OR logics
7 Power Report | [Number of Slice LUTs
[@ Bitgen Report

(- Secondary Reports
@ 1SIM Simulator Log
WebTalk Report
D WebTalk Log File -

Design Properties
[T Enable Message Filtering
Optional Design Summary Contents
[7] Show Clock Report
[] Show Failing Constraints
[7] Show Warnings
Show Errors

Number used as Single Port RAM

(]
Cd  Generate Post-Place & Route Simula,.,

clic_top Project Status (02/04/201 - 18:55:27)

| -
@ Bitgen Messages | |Slice Logic Utilization
2 an Implementation . Number of Slice Registers
=} Detailed Reports i used as Fip Fiops

Number used as logic
Number using OS5 outpyt only
Number using 05 and 06

Number used as Memory
Number used as Dual Port RAM

Number used as Shift Register
Number using 06 output only

8
B

ss]s]

-
&
N
Py
@
&

Number used exdusively as route-thrys
Number with same-slice register load



Modules Hierarchy
he VH

DL modules Iin a project compose a

Itree” of nested entities which, all together
mplement the user logic. ,

£} a'n‘a_log_card_ir{st - anaiog_card_ana103_if -rtl (anaIog_card_an3103_if.vhd)
=) m:! fgc3_wrapper - behavior (fgd_wrapper.vhd)
5 ['ng FGC31- fgc3_top - rtl (fgd_top.vhd)

fpgaclk_ext_in_synchronizers - external_inputs - tl (extemal_inputs.vhd) U A R—l_ —|—>< |
& g mcu_bclk_ext_in_synchronizers - external_inputs - rtl (extemal_inputs.vhd) F A E
iy delay_inst - delay - rtl (delay.vhd) C
4o glitch_filter_inst - glitch _filter - rtl (glitch_ﬁlter.vhd)
ag) clk_divide_inst - simple_counter - behavioral (simple_counter.vhd)
'ty dsp_reset_dly - delay - rtl (delay:vhd)
= m mcu_if_inst - mcu_if_top - structural (mcu_if_top.vhd) F S M
\ m mcu_mmap_inst - mcu_if_mmap - rtl (mcu_if_mmap.vhd)
n mode_reg_inst - mcu_mode_reg - rtl (mcu_mode.vhd)
\ g lssb_inst - |ssb - behavioral (Issb.vhd) ]
& [ timer_inst - mcu_timer - rtl (mcu_timervhd) h |ﬁ R
= ticklMHz_tx - handshake_transmitter -l (handshake_transmitter.vhd) e g
= regloaded_srff - gr ff-rtl (sr_ff.vhd)
d_ff_as_sr_inst - en_d_ff - behavior (en_d_ff.vhd)
S ) newd_srff - seff - el (srftvhd) C: ou n_te &
d_ff_as_sr_inst - en_d_ff - behavior (en_d_ff.vhd)
= ticklMHz_rx - handshake_receiver - structural (handshake_receiver.vhd)
ack_srff_inst - sr_ff - rtl (sr_ffvhd)
n timer_read_dly_inst - delay - rtl (delay.vhd)
m time_cnt - simple_counter - behavioral (simple_counter.vhd)
reset_manager_inst - reset_manager - rtl (reset_manager.vhd) .
m mcu_memory_map_inst - MCU_MEMORY_MAP - BEHAVIORAL (MCU_MEMORY_MAP.vhd) P
g mcu_mid_inst - mid - rtl (mid.vhd) a_ rl_t
'4g dsp_memory_map_inst - DSP_MEMORY_MAP - BEHAVIORAL (DSP_MEMORY_MAP.vhd)
| %4g dsp_mid_inst - mid - rtl (mid.vhd)
g DPRAMO - dualclock_dpram - rtl (dualclock_dpram.vhd) G e
'hg DPRAM_L - dualclock_dpram - rtl (dualclock_dpram.vhd) n e ra_to r

(T ARDALL D PR BB bbb b

S



Top Level Entity

e [his Is the module that holds all connection with the
‘external world”, It wraps all the logic and its inputs and
outputs correspond to the physical 1O blocks of the FPGA.

FPGA

lop Level

Entity




Timing Constraints

All complementary information which is needed
for the design to be iImplemented on the device
according to the timing requirements Is put in the
timing constraints. These may include, for
example:

e External and derived clock period

e [Iming relationships between externally fed
signals

e Paths to be ignored In the timing analysis

e Multi - cycle signals

ERisiso.0n. .,

# PROCESSOR CLOCK

NET MCU_BCLK_INT KEEP;

NET MCU_BCLK_INT TNM = TN_MCUBCLK;

TIMESPEC TS_MCUBCLK = PERIOD TN_MCUBCLK 40@ns;
NET DSP_EM_CLK_INT KEEP;

NET DSP_EM_CLK_INT TNM = TN_DSPEMCLK;

TIMESPEC TS_DSPEMCLK = PERIOD TN_DSPEMCLK 10ns;

# ADC SERIAL CLK

NET FGC3_1/analog_card_inst/ADC_SCK_FB KEEP;
NET FGC3_1/analog_card_inst/ADC_SCK_FB TNM =
TN_ADC_SCK_RB;

TIMESPEC TS_ADC_SCK_RB = PERIOD TN_ADC_SCK_RB 20ns;

NET FGC3_1/CLK_32MHZ KEEP;

NET FGC3_1/CLK_32MHZ TNM = TN_CLOCK_32MHZ;
TIMESPEC TS_CLOCK _32MHZ = PERIOD TN_CLOCK_32MHZ
31.25ns;

[...]

#IGNORE CROSS DOMAIN PATHS BETWEEN CLOCKS

NET "MCU_BCLK_INT" TNM_NET = mcu_grp;

NET "DSP_EM_CLK_INT" TNM_NET = dsp_grp;

NET "FGC3_1/fpgaclock2" TNM_NET = fpga_grp; #GIO

#NET "fpgaclock2" TNM_NET = fpga_grp; #PHIL
NET "FGC3_1/CLK_2MHZ" TNM_NET = 2m_grp;

NET "FGC3_1/CLK_SMHZ" TNM_NET = 5m_grp;

[...]

TIMESPEC TS_01
TIMESPEC TS_02
TIMESPEC TS_03
TIMESPEC TS_04
[...]

FROM "mcu_grp'" TO "fpga_grp" TIG;
FROM "mcu_grp" TO "2m_grp" TIG;
F
F

ROM "mcu_grp" TO "5m_grp" TIG;
ROM "mcu_grp" TO "16m_grp" TIG;




/0 Constraints

* [hese constraints are mainly needed to bind signals to physical
locations on the FPGA

e A typical example are /O Location Constraints, which assign top
level entity ports to physical IO blocks on the FPGA

e [hey can also specity other characteristics of the 10 signals, e.g.
dnive strength, type of electric termination, digital voltage standaro

"NotLED_VS_BLUE" LOC = P2 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =
"NotLED_VS_GREEN" LOC = K5 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =
"NotLED_VS_RED" LOC = P1 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =
"C62_DIN<0>" LOC = F19 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =
"C62_DIN<1>" LOC = F20 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =
"C62_DIN<2>" LOC = F18 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =

"C62_DIN<3>" LOC = E20 | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE =
"DSP_EM_CKE" LOC = B11 | IOSTANDARD = LVCMOS33 | PULLUP ;
"DSP_EM_CLK" LOC = A11 | IOSTANDARD = LVCMOS33 | PULLUP ;
"DSP_EM_CSo" LOC = G7 | IOSTANDARD = LVCMOS33 | PULLUP ;




Creating a SoC Project

“Soft " CRUsceks
e EDA tools typically offer

graphical interfaces to create s
SoC projects based on the
use of IP blocks provided . e

elther by the tool vendor or by
third parties

e Custom created IP blocks
(generated from RTL code) can
then be added and integrated Custom block from
| . RTLVHDL code
by using standard interfaces

P block by
6 tool vendor



Creating a SoC Project

‘customize IP

‘'oBlaze (9.6)

e |P blocks can be typically customized I—

IP Symbol | Resources | Component Name | design_1_microblaze_0_0

N several aspects to match the " " m

needs of the designer (i.e. CPU wach e

cores can be made more performing Z‘Z““’,h
and feature rich or lower In resource Ejjj::j;;;ﬁf;jtﬁi’j‘j;j;jf;jf‘"**'“‘*"""
footprint) =

———

e [he tools allow easy generation of
the memory map helping the e xR0 st ]

Cell Slave Interface Base Name Offset Address Range High Address

development of drivers to access the o L T —

: ~wm microblaze_0_local_memory/dimb_bram_if_cntir SLMB Mem 0x0000_0000 8K v 0x0000_1FFF

. -=a custom_ip_0 AXI_S reg0 0x44A0_0000 64 v 0x44RA0 FFFF

peripheralg from the CPU a-t the high B“?”::si?:;ﬂ;;i;j:;ﬁr:;ic;rj;;‘mb_bram_if_mﬂr SLMB Mem 0x0000_0000 8K v 0x0000_1FFF
S8 liacion level@r inesE/E=rcode
e OS

N



Structure of a
VHDL Module

A VHDL module Is characterized by:

e |sed libraries declarations topleve
::l'st::
q :

e ENtity declaration toplevel;

) ;

. rtl toplevel
intern : unsigned (2

e Ports list (input output inout etc.)

(clk, rst)

e Architecture head and body (entity implementation)

o Other features (generics, multiple architectures, etc.)

18



HDL is not programming!

A very important thing to remember (if not the most).

[ypical gotcha:

vield the same result!

This IS because HD

describing logic circuits, not operations!

S

HDL STATEMENTS ARE CONCURRENT! THINK HARDWARE!




Non-Synthesizable VHDL

e Some constructs in VHDL make code non synthesizable.

T _Enabje <= 1o

e A remarkable case: delays 100 ng

'1 ;

I_Enabje <=

e Another one: loops. Loops In synthesizable VHDL are only use
[0 replicate logic. For other purposes, use seguential processes

e Nevertheless, non-synthesizable VHDL is ok for testbenches. ..

e [t's Important to know what Is synthesizable and what is not

20



The importance of
simulation

One of the biggest problems in dealing with FPGAS is design validation.

Once the design is deployed on the device access to signals is very
imited

* Only the top level ports
e [est points? Maybe, but how many?

e [nternal Logic Analyzers (they occupy resources, modity the
routed design and can break timing)

Finding bugs can be VERY frustrating and time consuming this way

Only solution is 1o use simulation as an integrated part of the design flow

2]



Testbench design

e [estbench design becomes a very important phase of the design flow (comparable to the
development of the actual logic)

e A sophisticated testbench can (and should) include features such as:
e |nput randomization (or constrained randomization)
e Assertions for automatic output validation
e Fle |/O (e.g: to read input vector)
e Code Coverage verification

e Bus transaction modeling

* [here are languages and methodologies which are specifically developed with verification
N mind (see SystemVerilog, UVM)...and they are more complex than VHDL itself!

L)



Special Signals Handling:
Clock

Special care must be taken with clock for multiple reasons:

e Clock is fed to an enormous number of Flip Flops: high fanout / need for
careful buffering

o Skew must be kept low (balanced clock trees)

All this Is taken care by the tools almost transparently. But still:
e Bemember to constraint accurately

o Avoid “playing” with clock (e.g: don't use gating, there are other ways to
opbtain the same effect)

* [ypically, there can e more than a single clock in a design: watch out for
domain pboundaries!

5



Special Signals Handling
Reset - 1

Reset can pe elther synchronous or asynchronous:

e Synchronous reset takes effect on next clock
edge and Is treated by synthesizer as any other
synchronous signal (timing closure takes care of
correctness of reset propagation)

* Asynchronous reset Is instantaneous and takes
effect regardless of the presence of clock edges

LA



Special Signals Handling:
Reset - 2

Since asynchronous resets are not handled by timing closure, special
care must be taken with their use for multiple reasons:

* Asynchronous resets should be kept active for a sufficient time to make
sure they propagate correctly to all circuits

* De-assertion of an asynchronous reset should be simultaneous across
device to avoid state to progress In some areas while some other are
still being kept reset

* [ypical choice Is 10 use some additional logic 1o de-assert the
asynchronous reset synchronously with clock edge

L5



Signal Types in VHDL - 1

e Std_logic : represents a single bit of information.
tcan be "0 or “1" but also hold other states:
the most common are “X" for unknown, “U” for
Jnresolved and “Z" for high impedance (they are
typically useful when simulating).

Siignal fla@® csied logicy
e <= V0L

26



Signal Types in VHDL - 2

o std_logic_vector : represents an array of
std_logic and can be used for buses.

SRl FEidaba bus : siEé logiic yiEctor (7 downiEossisg
siasslilon= <— 01 0@F001 "7 ;

ceteEmbus<= X "FA";

cleieciCily( 4F <= ‘1’;

SR el (3 downto 0) <= Y0104”;

LT



Signal Types in VHDL - 3

VWhen dealing with arithmetic operations, it's most

convenient to use the Unsigned a

Nd Signed

types (according to

he type of data/operation)

e Part of ieee.numeric_std package

e Sign extension Is taken care of automatically

e Anyway VHDL will whine it you don't

28



Signal Types in VHDL - 4

e Arrays are custom types that can typically oe
used 1o represent blocks of memory

[ lemory16x32 1s array (@ tg¥1l5) of \
std l1@gi@ vector (31 dommliseRys

ShleRa | memble@k ¢ memorylox32;

li-nioeEa( |2\ @#<— x“57504:

7



Signal Casting in VHDL

e \/HDL Is strongly typed: it assignments have different signal
types on the two sides the synthesizer will issue an error.

e (Casting from one type to another is necessary

CMicin il edaita bus gFstd logi gifvector (S doninscrubae
ERRaitenl operandgl® uns1gnedi(®F downto 0)5;

SRENRCRUCE =" i1 1 gned (da@er Bhs) ;

e Becommendation: use std_logic/std_logic_vector for
entity ports

30



Basic Constructs of VHDL

e Signals and Assignations

e Processes and Variaples

e \\When .. else statement

e (Case statement

31



Signals and Assignations

e Assignations describe the

X test <= test in;
ohysical connections R 5 &) O 6
pDetween signals

muxout <= in0
inl;

()}
I
o

, , lut_q <= “1000”
e They can be simple wires T oo
“0001”

EmsleseiEemore complax ~0000" ;

0w n 0 ®n

structures like logic gates
or multiplexers/LUTs

32



Processes and Variables

e Processes are used to describe in a higher level of albstraction

combinatorial or seguen

lal logic. They are activated when a state

change happens on any of the signals in thelir “sensitivity list™:

 Sequential processes. only clock signal  (Combinatorial processes. all signals

(@nd asynchronous sets/resets, if

present)

(clk, rst)

rst = ‘1’
\OI ;

q <=

q <=

d;

which appear on the right hand side of
an assignment

(s, A0, Al, A2, A3)

S
“00” => muxout <= AQ;
“0l1” => muxout <= Al;
“10” => muxout <= A2;
=> muxout <= A3;

b5



Again, the classic HDL trap!

e Classic programming statements can be used in processes,
pout this is NOT programming: the statements, in order, are all
scheduled to happen at the end of the process

e |0 this process, the first
assignment never happens,
and in the third and fourth
assignments “‘c” and "a” get
assigned the “old” (before
the clock edge) values of
‘a’ and ‘c” respectively




Case statement

Used in processes

Similar in structure and syntax as in

orogramming languages

Typically used for Finite State
Machines

t's very important to specity values of
touts for all cases (doing the

ou
Op

posSIte may result in latches).

35

-—- Default output assignments
adc_cnv_o <= '0"';
adc_clk tick timer en <= '0';
adc_clk_tick_ timer pre <= 'l'
acq msb_timer en <= '0';
cnv_h timer en <= '0"';
data _en o <= '0'
cur_state
IDLE =>
en i = '1'
next state <= CNV_H;

CNV_H =>
cnv_h elapsed = ‘1'
next state <= CNV_L;

adc_cnv_o <= '1l';
acqg msb _timer en <= '1l';
cnv_h timer en <= '1l"
CNV_L =>
acq msb elapsed = '1l'
next state <= CLK_TOGGLE;

acq msb timer en <= 'l';
CLK_TOGGLE =>
clk pulse_ train over = 'l'
next state <= READY;

adc_clk_tick timer en <= 'l';
adc_clk _tick timer pre <= '0';
READY =>

en i = '1'

next state <= CNV_H;

next state <= IDLE;




A trap to avoid: incomplete

case (or if) statements

* |[f we remove the default assignments to
outputs, the synthesizer won't know what
to do with outputs that are unspecified for
given cases

* [hey will keep thelr value, generating a
register in a sequential process

* |[n a combinatorial process, though, this
creates unwanted “latches” (which are
pad practice for FPGA design, in general).

36

cur_state

IDLE =>
en i = 'l'
next state <= CNV_H;

CNV_H =>
cnv_h elapsed = ‘1'
next state <= CNV_L;

adc_cnv_o <= 'l'
acq msb_timer en <= 'l1l';
cnv_h timer en <= '1"';
CNV_L =>
acq msb elapsed = '1'
next_ state <= CLK_TOGGLE;

acq msb_ timer en <= 'l1l';
CLK_TOGGLE =>
clk pulse_ train over = 'l'
next state <= READY;

adc_clk_tick timer en <= 'l';
adc_clk_tick timer pre <= '0';
READY =>

en i ='1"'

next state <= CNV_H;

data en o <= 'l1"';
=>
next_state <= IDLE;




Take Home Messages

HDLSs are not programming languages. They are a tool to
describe digital logic circuits.

Watch Out for Non-Synthesizable Code and for the traps
of a "programmer mindset”

Simulation is essential! \\Vriting good testbenches is as
mportant as writing good logic.

Handle adequately resets and clock signals

37



