Benchmark Points for Type-I 2HDMs with a light h

William Klemm

Uppsala University & The University of Manchester

william.klemm@physics.uu.se

WG3 Benchmark Discussion

October 24, 2018

Rikard Enberg, WK, Stefano Moretti, and Shoaib Munir [arXiv:1605.02498] Abdesslam Arhrib, Rachid Benbrik, Rikard Enberg, WK, Stefano Moretti, and Shoaib Munir [arXiv:1706.01964]

□ ▶ ▲ □ ▶ ▲ □

Introduction

Scenario: Type-I 2HDM with $m_h < m_H = 125 \text{ GeV}$

- Focus: Processes dominated by electroweak production (vs. gluon) fusion)
- Parameter scans for points with interesting signatures
- Light states easily accessible at LEP
 - h/A hiding behind Z^*A/Z^*h decays
 - Light H^{\pm} hiding behind W^*h/W^*A decays
- Fermiophobia: $g_{hff} \sim \cos \alpha / \sin \beta \ll 1$ leads to enhancement of other decays, e.g. $h \rightarrow \gamma \gamma$

Proposed benchmarks:

• Resonant $pp \rightarrow Z \rightarrow hA$

•
$$pp
ightarrow H^{\pm}h
ightarrow W^{\pm(*)}hh
ightarrow W^{\pm(*)}\gamma\gamma\gamma\gamma$$

- 4 同 6 4 日 6 4 日 6

Parameter scans

Constraints on scan (95% CL)

- Unitarity, perturbativity, vacuum stability [2HDMC]
- Electroweak precision observables
- LEP, Tevatron, LHC limits [HiggsBounds 5]
- B-physics observables [Superiso]
- Reproduce observed 125 GeV signal strengths [HiggsSignals]
- Z width
- DELPHI fermiophobic Higgs searches (e⁺e[−] → hA)
- All BPs here checked against HiggsBounds-5.2

Parameter	Scanned range
m_h (GeV)	(10, 120)
m_A (GeV)	(10, 500)
$m_{H^\pm}({ m GeV})$	(80, 170)
$\sin(eta-lpha)$	(-1, 1)
$m_{12}^2 \; ({ m GeV}^2)$	$(0, m_A^2 \sin\beta \cos\beta)$
aneta	(2, 25)

Scanned ranges of the 2HDM-I parameters. $m_H = 125$ GeV.

3

• • = • • = •

Benchmark Points

m_h	m_H	m_A	$m_{H^{\pm}}$	$\sin(eta-lpha)$	m_{12}^2	aneta	$\cos \alpha / \sin \beta$
54.2	125.0	33.0	95.9	-0.11590	118.3	9.0947	$-6.7 imes 10^{-3}$
22.2	125.0	64.9	101.5	-0.046960	10.6	22.114	$-1.8 imes 10^{-3}$
14.3	125.0	71.6	107.2	-0.061929	2.9	16.307	-7.2×10^{-4}
27.5	125.0	117.8	86.8	-0.14705	44.5	6.8946	$-3.6 imes10^{-3}$
63.3	125.0	129.2	148.0	-0.048763	173.1	20.660	$-4.2 imes 10^{-4}$
	m _h 54.2 22.2 14.3 27.5 63.3	$\begin{array}{c ccc} m_h & m_H \\ \hline 54.2 & 125.0 \\ 22.2 & 125.0 \\ 14.3 & 125.0 \\ 27.5 & 125.0 \\ 63.3 & 125.0 \\ \end{array}$	$\begin{array}{c ccccc} m_h & m_H & m_A \\ \hline 54.2 & 125.0 & 33.0 \\ 22.2 & 125.0 & 64.9 \\ 14.3 & 125.0 & 71.6 \\ 27.5 & 125.0 & 117.8 \\ 63.3 & 125.0 & 129.2 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Parameters defining benchmark points in a Type-I 2HDM. All masses are in GeV.

BP	Highlighted Channels
1	$hA ightarrow Z^*AA ightarrow Z^*bar{b}bar{b}$
2	$hA ightarrow Z^* hh ightarrow Z^* bar{b} bar{b}$
3	$hA ightarrow Z^* hh ightarrow Z^* (bar b bar bar b/bar b\gamma\gamma/\gamma\gamma\gamma\gamma)$
3,4,5	$H^{\pm}h ightarrow W^{\pm(*)}hh ightarrow W^{\pm(*)}\gamma\gamma\gamma\gamma\gamma$
3,4,5	$H^{\pm}A ightarrow W^{\pm(*)}Z^{(*)}hh ightarrow W^{\pm(*)}Z^{(*)}\gamma\gamma\gamma\gamma\gamma$

3

(日) (周) (三) (三)

Resonant $pp \rightarrow Z \rightarrow hA$

 $qar{q}(gg)
ightarrow Z(Z^*)
ightarrow hA$ production dominated by $qar{q}$ due to Landau-Yang Theorem

- 2HDM-I with $m_h + m_A < m_Z$
- Severely constrained by Γ_Z
- Limited by $H \rightarrow AA$, $h \rightarrow AA$
- Final states: $Z^*(bar{b}/ au au)(bar{b}/ au au)$
- BP3: $Z^* \gamma \gamma (\gamma \gamma / b \bar{b} / \tau \tau)$ possible

	cross section[fb]		BR(h o) [%]				$ $ BR($A \rightarrow$) [%]		
ΒP	$\sigma(qar{q} ightarrow hA)$	$\sigma(gg ightarrow hA)$	Z*A	bb	$\gamma\gamma$	au au	Z*h	bb	au au
1	41.2	$1.5 imes10^{-4}$	94	5	< 1	< 1	0	86	7
2	34.4	$7.2 imes10^{-3}$	0	83	3	7	86	12	1
3	31.6	$1.1 imes10^{-2}$	0	60	24	7	90	8	1
3	31.6	$1.1 imes 10^{-2}$	0	60	24	7	90	8	1

 $pp \rightarrow H^{\pm}h \rightarrow W^{\pm} + 4\gamma$

 $hH^+W^- \propto \cos(\beta - \alpha) \approx 1$ • $pp \rightarrow W^{\pm *} \rightarrow H^{\pm}h$ maximized, can exceed tbH^{\pm} at large $\tan \beta$ • $BR(H^{\pm} \rightarrow W^{\pm}h)$ also enhanced $BR(h \rightarrow \gamma\gamma) \rightarrow 1$ in fermiophobic limit

Willie Klemm (Uppsala/Manchester)

October 24, 2018 6 / 9

$pp \rightarrow H^{\pm}h \rightarrow W^{\pm} + 4\gamma \& pp \rightarrow H^{\pm}A \rightarrow W^{\pm}Z + 4\gamma$

Nearly background free $\sigma_{SM}(\ell^{\pm} + 4\gamma) < 10^{-6}pb$ for $p_T^{(\ell,\gamma)} > 10 \text{ GeV}$

Soft objects suggest multi-object triggers, e.g. 3γ with $p_T > 15 GeV$ used in ATLAS 3γ search [arXiv:1509.05051]

ΒP	$\sigma(W^{\pm} + 4\gamma)$	$\sigma(W^{\pm}Z + 4\gamma)$	$H^{\pm} ightarrow W^{\pm} h$	$h ightarrow \gamma \gamma$	$A \rightarrow Zh$
3	88.8	26.8	1.00	0.24	0.90
4	61.5	7.4	0.98	0.16	0.94
5	141.4	55.7	1.00	0.71	0.98

Cross sections (in fb) and relevant BRs of H^{\pm} , h, and A for the BPs.

W + 4 γ kinematic distributions

Summary

- BP1 and BP2 have large resonant $q\bar{q} \rightarrow Z \rightarrow hA$ production cross sections, giving possible $Z^* + 4f$ signatures.
- BP3 has strong hA and $W^{\pm} + 4\gamma$ signals. It has a large $m_{H^{\pm}} m_h$ difference, which should lead to a harder spectrum for a lepton from W^{\pm} decay in the $W^{\pm} + 4\gamma$ signature.
- BP4 has a very light H^{\pm} , whose decay products will include a very off-shell W^* . This BP is challenging as all final state objects tend to be soft.
- Unlike the other benchmark points shown in this note, which evade LEP-II constraints through non-standard decays, BP5 lies near the upper CM energies at LEP-II for hA and hH^{\pm} production. It has the hardest p_T distributions in $W + 4\gamma$ production.

イロト 不得 トイヨト イヨト 二日

Backup

3

▲口> ▲圖> ▲屋> ▲屋>

Fermiophobic h in the 2HDM-I

h couplings: $hf\bar{f} \propto \cos \alpha / \sin \beta$ $hVV \propto \sin(\beta - \alpha) \approx 0$ (SM-like *H*) $hH^+H^- \sim$ potential parameters

$$\cos lpha = \sin eta \sin(eta - lpha) + \cos eta \cos(eta - lpha)$$

- If $\cos \alpha$ vanishes, $h \to \gamma \gamma$ can be large, dominated by H^+ loop
- $h \to f \bar{f}/gg$ suppressed by $\cos \alpha$
- $h \rightarrow VV$ suppressed by $\sin(\beta \alpha)$ and kinematics

Large $BR(h \rightarrow \gamma \gamma)$

DELPHI $e^+e^- \rightarrow hA$ limit

Search for fermiophobic e⁺e⁻ → hA, with h → γγ, A → bb or A → Zh → Zγγ when kinematically allowed [hep-ex/0406012]
No general limits on (m_h, m_A)

Willie Klemm (Uppsala/Manchester)

2HDM-I Light Higgs Benchmarks

DELPHI $e^+e^- ightarrow hA$ limit

- Assume that selection efficiency has only small variation with m_h, m_A , and $182 < \sqrt{s} < 207~{\rm GeV}$
- Translate limits on $sin(\beta \alpha)$ for fermiophobic model into number of expected signal events (before selection) using known $\sigma \times BR$ for fermiophobic Higgs.

$$ilde{\mathcal{N}}_{\sf max}(m_h,m_A) = \mathcal{N}_0(m_h,m_A)(1-(arsigma_{etalpha}^{
m lim}(m_h,m_A))^2) imes {
m BR}(h_f o\gamma\gamma).$$

$$N_0(m_h, m_A) = \sum_{\{s\}} \sigma_0(s, m_h, m_A) \times \mathcal{L}(s) \qquad (\cos(\beta - \alpha) = 1)$$

 This value varies slowly in relevant region - take N
_{max} as a single parameter and fit to each curve to approximate limit:

$$\cos^{2}(\beta - \alpha) \times \mathrm{BR}(h \to \gamma \gamma) \times \mathrm{BR}(A \to X) \leq \frac{N_{\max}}{N_{0}(m_{h}, m_{A})}$$

Recast DELPHI $e^+e^- \rightarrow hA$ limit

(Left)Estimated limits on $\cos^2(\beta - \alpha) \times BR(h \rightarrow \gamma\gamma) \times BR(A \rightarrow b\bar{b}/Z\gamma\gamma)$ with $\tilde{N}_{max} = 8.4$. **NOTE: BPs shown here are from the original text, not the BPs put forth in this presentation**. The dashed line indicates where $m_A = m_h + m_Z$, above which the on-shell $A \rightarrow Zh$ decay is possible. (Right) Fit to DELPHI fermiophobic hA limits.

Willie Klemm (Uppsala/Manchester)