Proposal: Benchmark Point with low-mass CP-odd Higgs A with strong couplings to leptons and top quarks

Theory: Uladzimir Khasianevich, Dominik Stöckinger, Hyejung Stöckinger-Kim

ATLAS: Wolfgang Mader, Paul Moder, Arno Straessner

Call of HXSWG, discussion: 17th October 2018

Dominik Stöckinger 1/7

Overview

- We propose benchmarks points for the search for a new light (CP-odd) Higgs A with the following properties
 - ▶ mass 20...90 GeV
 - ightharpoonup small/negligible couplings to W, Z
 - ▶ large couplings to leptons ($\sim 50 \times \text{SM}$)
 - ▶ large couplings to top-quarks $(\mathcal{O}(SM))$

Motivation:

- new light particles should be searched for comprehensively
- ▶ several "anomalies" in low-E observables, dark matter \(\sim \) light new states?
- ▶ specifically: muon g 2 can be explained by such light A
- ▶ the scenario can be realized in the 2HDM, we have delineated the range of A-couplings allowed be existing constraints
- Existing studies:
 - \blacktriangleright theory investigation of constraints on masses/couplings/g-2 [Cherchiglia,Stöckinger,Stöckinger-Kim'17]
 - ► ATLAS study on possible reach of LHC searches [Mader, Moder, Straessner]

Dominik Stöckinger 2/7

a_{μ} in the 2-Higgs doublet model? [Cherchiglia,DS,Stöckinger-Kim '17]

- $(g-2)_{\mu}$: 3–4 σ discrepancy, not easy to explain (\rightsquigarrow SUSY limits!)
- promising: 2HDM with light A_0 , large couplings to τ (and top) can explain $(g-2)_{\mu}$ via 2-loop diagrams

- \Rightarrow 2HDM can explain a_{μ} for $M_A = 20 \dots 100$ GeV.
- ⇒ Need largest possible lepton couplings and top couplings
- \Rightarrow Suppress couplings to W, Z and suppress $h \to AA$ if $M_A < 62.5$ GeV

Dominik Stöckinger

Two-Higgs Doublet Model couplings

• Yukawa couplings (XSM) in general "aligned" model [Pich, Tuzon]

$$Y_{d,l;u}^{A} = \mp \zeta_{d,l;u}$$

$$Y_{f}^{h} = s_{\beta-\alpha} + c_{\beta-\alpha}\zeta_{f}$$

$$Y_{f}^{H} = c_{\beta-\alpha} - s_{\beta-\alpha}\zeta_{f}$$

Compare with:

MSSM/Type 2:
$$\zeta_{d,l} = -\tan\beta, \qquad \zeta_u = 1/\tan\beta$$

Type X (lepton-specific): $\zeta_l = -\tan\beta, \qquad \zeta_{d,u} = 1/\tan\beta$

Analysis of `[Cherchiglia,DS,Stöckinger-Kim'17]` for
$$M_A=20\dots 100$$
 GeV: general limits $|\zeta_I|<50\dots 100$, $|\zeta_u|<\sim 0.5$ — details below

Dominik Stöckinger 4/7

constraints on A-couplings to tau/top [Cherchiglia, DS, Stöckinger-Kim'17]

 $Z \to \tau \tau$, τ -decay, LEP $e^+e^- \to 4\tau$ constraints on $\zeta_L!$

 $b \rightarrow s\gamma$, $B_s \rightarrow \mu\mu$, LHC constraints!

Dominik Stöckinger 5/7

Benchmark points and LHC predictions

The scenario of low-mass A is motivated — it should be tested/found or excluded at the LHC! We suggest two points at border of allowed parameter space [Khasianevich, Stöckinger, Stöckinger-Kim, Mader, Moder, Straessner]:

Point 1:	Point 2:		
$M_A = 50 \text{ GeV}$	$M_A = 80 \text{ GeV}$		
$\zeta_I = -40$	$\zeta_I = -60$		
$\zeta_u = 0.5$	$\zeta_u = 0.5$		
$C_{hAA}=0$	$C_{hAA}=0$		
$\cos(\beta - \alpha) = 0$	$\cos(\beta - \alpha) = 0$		

$${\sf BR}(A o au au)pprox 100\%$$
 and $f_\sigma\equivrac{\sigma(gg o A)}{\sigma(gg o h_{\sf SM-like})}pprox 0.6\dots 0.7$ (uncertainty: LO and ζ_d unknown)

study for ATLAS-reach on $f_\sigma \equiv \frac{\sigma(gg \to A)}{\sigma(gg \to h_{\rm SM-like})}$ has been carried out — shows that exclusion down to $f_\sigma \approx 0.2$ can be possible! [Mader,Moder,Straessner]

Dominik Stöckinger 6/7

SM-like Higgs cross section:

Mass [GeV]	XSec [pb]			
mass [Gev]	LO	NLO	NNLO	N ³ LO
60	43.897	109.278	151.238	166.827
70	35.0192	85.44	117.398	129.316
80	28.5669	68.6164	93.6927	103.082
90	23,7323	56,2314	76,4134	83,9884

Table 0.1: Cross-section for a Standard Model Higgs boson with different mass and orders, calculated with ggHiggs (https://www.ge.infn.it/~bonvini/higgs/)

Trigger choices:

	$m_A = 60 \text{ GeV}$	$m_A = 70 \text{ GeV}$	$m_A = 80 \text{ GeV}$	$m_A = 90 \text{GeV}$	
Baseline	# of μ = # of $e = 1$ and $q_{\mu} \cdot q_{e} = -1$				
Selection	$p_T^{\mu} > 25 \text{ GeV}, p_T^{e} > 8 \text{ GeV}$				
	# of b-jets = 0 with $p_T^{jet} > 20 \text{ GeV}$				
Individual Event Selection	$m_T^{tot} < 55 \text{ GeV}$	$m_T^{tot} < 65 \text{ GeV}$	$m_T^{tot} < 75 \text{ GeV}$	$m_T^{tot} < 85 \text{GeV}$	
	$m_{ll} < 40 \text{ GeV}$	$m_{ll} < 40 \text{ GeV}$	$m_{ll} < 50 \text{ GeV}$	$m_{ll} < 60 \text{ GeV}$	
	$m_{MMC} < 65 \text{GeV}$	$m_{MMC} < 75 \text{ GeV}$	$m_{MMC} < 85 \mathrm{GeV}$	$m_{MMC} < 100 \mathrm{GeV}$	
	$\Delta \eta_{ll} < 1.6$	$\Delta \eta_{ll} < 1.8$	$\Delta \eta_{ll} < 1.8$	$\Delta \eta_{ll} < 2.4$	
	$\Delta R_{ll} < 2.3$	$\Delta R_{ll} < 3.1$	$\Delta R_{ll} < 3.0$	$\Delta R_{ll} < 3.1$	

Table 0.2: Complete list of cuts for all different signal processes

Resulting expected upper limits for the scaling factor $f_{\sigma} = \frac{\sigma(gg \to A)}{\sigma(gg \to h_{\text{SM, like}})}$:

[limits are in the range $f_{\sigma} < 0.2...0.4$ for M_{Δ} between

60 . . . 90 GeV (Master thesis Paul Moder)]

Dominik Stöckinger