Introduction	Motivation	Benchmark points	Some pheno	Conclusion

LHC Higgs Cross Section Working Group 3

Charged Higgs boson benchmarks from top quark polarization

Arhrib Abdesslam¹, Adil Jueid², Stefano Moretti³

¹ Université Abdelmalek Essaadi, Tangier, Morocco.
² Shanghai Jiao Tong University, Shanghai, China.
³ University of Southampton, Southampton, United Kingdom.

October 24, 2018

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 の Q (2) 1/10

Introduction	Motivation	Benchmark points	Some pheno	Conclusion
Table of co	ontents			

1 Introduction

2 Motivation

Benchmark points

Some pheno

5 Conclusion

<□> < □> < □> < 三> < 三> < 三> 三 のへで 2/10

Introduction	Motivation OO	Benchmark points OO	Some pheno	Conclusion O
Introduction				

- The two Higgs doublet model is one of the simplest extensions of the SM. The model contains (after EWSB) two CP-even scalars (h⁰ and H⁰), one CP-odd scalar (A⁰) and a pair of charged scalars H[±].
- The presence of the new scalars can leave footprints in several channels and measurements (Higgs couplings, differential distributions...etc).
- We propose two benchmark points motivated by the sensitivity of top quark observables (based on 1807.11306) in charged Higgs production in association with a top quark at the LHC-HL.
- The observables were investigated are sensitive to the production mechanism of top quark (they show different behaviors for different processes)

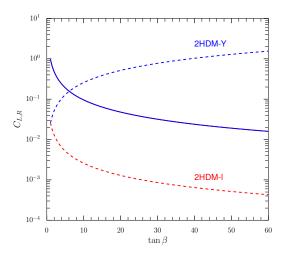
 \implies Can be used for charged Higgs searches ?

• They have also the advantage of being resilient to matching of 4FS and 5FS and to NLO QCD corrections.

Introduction O	Motivation ●O	Benchmark points	Some pheno	Conclusion O
Motivation				

• We start by remarking that $tH^- + c.c$ depends on $g_{\bar{t}bH^+}$ (in addition to the charged Higgs boson mass)

$$g_{\bar{t}bH^+} = i(C_L P_L + C_R P_R), \qquad C_L = \frac{1}{\sqrt{2}v} m_t \kappa_u^A, C_R = \frac{1}{\sqrt{2}v} m_b \kappa_d^A.$$


 $\kappa_u^A = 1/\tan\beta$ for all the Yukawa type of 2HDM and

 $\kappa_d^A = \tan \beta \ (-1/\tan \beta)$ for type-II and type-Y (type-I and type-X)

What are the implications of this?

- In type-I (type-X), this coupling is always left-handed (with very small contribution from right-handed component) ⇒ top quark is produced with negative polarisation in the helicity basis.
- In type-II (type-Y), $g_{\bar{t}bH^+}$ can be L- dominated, R- dominated or purely scalar \implies Top quark polarization is arbitrary and it's only controlled by tan β (in addition to charged Higgs boson mass.

Introduction	Motivation	Benchmark points	Some pheno	Conclusion
	00			
Motivation				

blue color for the right-handed component while the red corresponds to the left-handed component of $\overline{t}bH^+$ coupling.

Introduction O	Motivation 00	Benchmark points	Some pheno	Conclusion O
Benchmark po	ints			

We choose two benchmark points; one for type-I and the other one for type-Y which are maximally left-handed or right-handed. Which give

• $(C_L, C_R) = (0.94, -0.025)$ for 2HDM-I corresponding to tan $\beta = 1$.

•
$$(C_L, C_R) = (0.019, 1.3)$$
 for 2HDM-Y corresponding to $\tan \beta = 50$.

	aneta	<i>m_{h⁰}</i> [GeV]	$m_{H^{\pm}}$ [GeV]	<i>m_{H⁰}</i> [GeV]	m ₁₂ ² [GeV ²]
BP1	1	125	300	400	1850
Bp2	50	125	500	700	9794

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with $\sin(\beta - \alpha) \simeq 1$ and $m_{A^0} = m_{H^0}$.

Introduction	Motivation	Benchmark points	Some pheno	Conclusion
O	00	O●		O
Benchmark po	ints			

- The two benchmark points satisfy all the theoretical and experimental constraints which were checked using 2HDMC, HIGGSBOUNDS and HIGGSSIGNALS.
- The choice of CP-odd and CP-even masses is arbitrary and don't affect the phenomenology considered in our study. Other choices can be acceptable as long as decays such as $H^{\pm} \rightarrow H^0 W^{\pm}$ and $H^{\pm} \rightarrow A^0 W^{\pm}$ are kinematically forbidden.

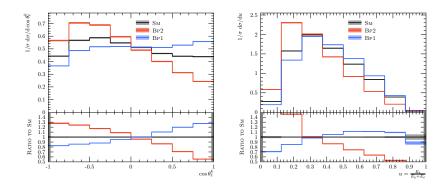
< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q @ 7/10

• The choice of Charged Higgs boson masses is motivated to keep somehow decent rates. However, higher masses have higher sensitivities to top quark polarization (especially for type-I).

Introduction	Motivation	Benchmark points	Some pheno	Conclusion
O	00		●O	O
Some pheno				

- In both benchmark scenarios, the branching ratio of $H^+ \rightarrow t\bar{b}$ is almost 100%.
- The cross section for the production in the lepton+jets final states is

 $0.367 \pm 10.2\%$ (scale) $\pm 16.6\%$ (PDF) pb


for BP1 and

 $0.162 \pm 9.5\%$ (scale) $\pm 19.3\%$ (PDF) pb

for BP2.

Estimation was performed at LO in perturbation theory in the 5FS. Matching the 4FS and 5FS reduces the total rate by 14% (15%) for BP1 (BP2).

Introduction	Motivation	Benchmark points	Some pheno	Conclusion
O	00		O●	O
Some pheno				

Introduction O	Motivation 00	Benchmark points	Some pheno	Conclusion •
Conclusion				

- We have presented two benchmark points based on top quark polarization in the $H^-t + c.c.$ channel at the LHC-HL.
- The two benchmarks are only representative and there are other scenarios which yield almost the same sensitivity (provided that are dominated by either left-handed or right-handed components).
- There are multiple ways to quantify our findings in a fully-fledged selection by using multivariate methods and/or constructing forward backward asymmetries.
- These benchmarks can be generalised to any model containing the charged Higgs boson that decays predominantly to *tb*.

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 10/10