## IDM benchmarks for the LHC at 13 and 27 TeV

Tania Robens based on work with A. Ilnicka, M. Krawczyk, (D. Sokolowska) (arXiv:1505.04734; arXiv:1508.01671; arXiv:1510.04159; arXiv:1705.00225) A. Ilnicka, T. Stefaniak

(arXiv:1803.03594)

J. Kalinowski, W. Kotlarski, D. Sokolowska, A. F. Zarnecki

(contribution to CLIC Yellow Report; arXiv:1809.07712)

[see also LHC Dark Matter Working Group, arXiV:1810.09420]

Ruder Boskovic Institute

WG3 extended scalars subgroup open meeting

24.10.18

Tania Robens

## Inert doublet model: The model

• idea: take two Higgs doublet model, add additional Z<sub>2</sub> symmetry

$$\phi_D \rightarrow -\phi_D, \phi_S \rightarrow \phi_S, SM \rightarrow SM$$

 $(\Rightarrow \text{ implies CP conservation})$ 

- ⇒ obtain a 2HDM with (a) dark matter candidate(s)
  - potential

$$V = -\frac{1}{2} \left[ m_{11}^2 (\phi_5^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right] + \frac{\lambda_1}{2} (\phi_5^{\dagger} \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^{\dagger} \phi_D)^2 + \lambda_3 (\phi_5^{\dagger} \phi_S) (\phi_D^{\dagger} \phi_D) + \lambda_4 (\phi_5^{\dagger} \phi_D) (\phi_D^{\dagger} \phi_S) + \frac{\lambda_5}{2} \left[ (\phi_5^{\dagger} \phi_D)^2 + (\phi_D^{\dagger} \phi_S)^2 \right],$$

3

WG3 subgroup, 24,10,18

only one doublet acquires VeV v, as in SM
 (⇒ implies analogous EWSB)

Tania Robens

 $\Rightarrow$  then, go through standard procedure...

- $\Rightarrow$  minimize potential
- $\Rightarrow$  determine number of free parameters

Number of free parameters here: 7

e.g.

v, M<sub>h</sub>, M<sub>H</sub>, M<sub>A</sub>, M<sub>H<sup>±</sup></sub>,  $\lambda_2$ ,  $\lambda_{345}$  [=  $\lambda_3 + \lambda_4 + \lambda_5$ ]

•  $v, M_h$  fixed  $\Rightarrow$  left with **5** free parameters

Tania Robens

3

## Constraints: Theory

 $\Rightarrow$  consider all current constraints on the model  $\Leftarrow$ 

Theory constraints: vacuum stability, positivity, constraints to be in inert vacuum
 ⇒ limits on (relations of) couplings, e.g.

$$\lambda_1 > 0, \, \lambda_2 > 0, \, \lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0, \, \lambda_{345} + \sqrt{\lambda_1 \lambda_2} > 0$$

perturbative unitarity, perturbativity of couplings
 choosing M<sub>H</sub> as dark matter:

 $M_H \leq M_A, M_{H^{\pm}}$ 

< 口 > < 🗗

WG3 subgroup, 24,10,18

E 990

Tania Robens

#### $M_h = 125.1 \,\mathrm{GeV}, \, v = 246 \,\mathrm{GeV}$

- total width of  $M_h$  ( $\Gamma_h < 13 \text{ MeV}$ );  $\Rightarrow$  JHEP, 09:051, 2016<sup>(\*)</sup>
- total width of W, Z
- collider constraints from signal strength/ direct searches;  $R_{\gamma\gamma}$  and BR<sub>h→inv</sub> from JHEP, 08:045, 2016
- electroweak precision through S, T, U
- unstable  $H^{\pm}$
- reinterpreted/ recastet LEP/ LHC SUSY searches (Lundstrom ea 2009; Belanger ea, 2015)

- dark matter relic density (upper bound)
- dark matter direct search limits (XENON1T)
- ⇒ tools used: 2HDMC, HiggsBounds, HiggsSignals, MicrOmegas

## Production and decay

• *Z*<sub>2</sub> symmetry:

only pair-production of dark scalars  $H, A, H^{\pm}$ 

o production modes:

$$pp \rightarrow HA, HH^{\pm}, AH^{\pm}, H^{+}H^{-}$$

• decays:

A  $\rightarrow$   $\textbf{Z}\,\textbf{H}$  : 100%,  $\textbf{H}^{\pm}$   $\rightarrow$   $\textbf{W}^{\pm}\textbf{H}$  : dominant

signature: electroweak gauge boson(s) + MET

## Parameters tested at colliders: mainly masses

- side remark: all couplings involving gauge bosons determined by electroweak SM parameters
- e.g. predictions for LHC@13 TeV do not depend on  $\lambda_2$ , only marginally on  $\lambda_{345}$
- all relevant couplings follow from ew parameters (+ derivative couplings) ⇒ in the end a kinematic test
- only in exceptional cases  $\lambda_{345}$  important
- ⇒ high complementarity between astroparticle physics and collider searches

(holds for  $M_H \geq \frac{M_h}{2}$ )

Tania Robens

< • • • **•** 

WG3 subgroup, 24,10,18

E 990

## Distribution in the mass plane [arXiv:1809.07712]



#### mainly from electroweak constraints

Tania Robens

WG3 subgroup, 24.10.18

A B > 4
 A

## Low mass benchmark points [Points from arXiv:1809.07712]

| No.  | M <sub>H</sub> | M <sub>A</sub> | M <sub>H±</sub> | HA   | $HH^+$ | AH <sup>+</sup> | $H^+H^-$ | AA   | onshell |
|------|----------------|----------------|-----------------|------|--------|-----------------|----------|------|---------|
| BP1  | 72.77          | 107.803        | 114.639         | 322  | 304    | 169             | 132      | 0.4  |         |
| BP2  | 65             | 71.525         | 112.85          | 1022 | 363    | 322             | 140      | 0.1  |         |
| BP3  | 67.07          | 73.222         | 96.73           | 909  | 504    | 444             | 242      | 0.1  |         |
| BP4  | 73.68          | 100.112        | 145.728         | 377  | 165    | 115             | 55.1     | 0.3  |         |
| BP6  | 72.14          | 109.548        | 154.761         | 314  | 144    | 88.9            | 45.1     | 0.4  | W       |
| BP7  | 76.55          | 134.563        | 174.367         | 173  | 99.0   | 50.8            | 29.2     | 0.4  | W       |
| BP8  | 70.91          | 148.664        | 175.89          | 144  | 103    | 42.7            | 28.3     | 0.5  | W       |
| BP9  | 56.78          | 166.22         | 178.24          | 125  | 116    | 34.4            | 27.1     | 0.6  | W, Z    |
| BP10 | 76.69          | 154.579        | 163.045         | 120  | 119    | 46.4            | 37.3     | 0.5  | W       |
| BP11 | 98.88          | 155.037        | 155.438         | 87.7 | 101    | 50.4            | 43.8     | 0.2  |         |
| BP12 | 58.31          | 171.148        | 172.96          | 113  | 125    | 34.5            | 30.3     | 0.6  | W, Z    |
| BP13 | 99.65          | 138.484        | 181.321         | 113  | 68.8   | 44.7            | 25.2     | 0.3  | W       |
| BP14 | 71.03          | 165.604        | 175.971         | 106  | 103    | 35.5            | 28.3     | 0.5  | W, Z    |
| BP15 | 71.03          | 217.656        | 218.738         | 46.9 | 54.6   | 14.2            | 12.8     | 0.4  | W, Z    |
| BP16 | 71.33          | 203.796        | 229.092         | 57.3 | 47.3   | 14.6            | 10.8     | 0.4  | W, Z    |
| BP18 | 147            | 194.647        | 197.403         | 29.6 | 34.0   | 21.3            | 17.9     | 0.1  |         |
| BP19 | 165.8          | 190.082        | 195.999         | 25.5 | 28.6   | 22.5            | 18.3     | 0.03 |         |
| BP20 | 191.8          | 198.376        | 199.721         | 17.9 | 21.4   | 20.1            | 16.9     | 0.03 |         |
| BP21 | 57.475         | 288.031        | 299.536         | 20.6 | 21.8   | 4.02            | 4.04     | 0.3  | W, Z    |
| BP22 | 71.42          | 247.224        | 258.382         | 31.3 | 32.5   | 8.05            | 6.90     | 0.4  | W, Z    |
| BP23 | 62.69          | 162.397        | 190.822         | 125  | 88.9   | 31.3            | 21.1     | 0.5  | W, Z    |

Production cross sections in fb, at 13 TeV [UFO+Madgraph]> 1000 events in Run II for each process: all but BPs 21 and 22

Tania Robens

WG3 subgroup, 24.10.18

### High mass benchmark points [Points from arXiv:1809.07712]

| No.  | M <sub>H</sub> | M <sub>A</sub> | M <sub>H</sub> ± | HA    | H H <sup>+</sup> | $AH^+$ | $H^+H^-$ | AA    | onshell |
|------|----------------|----------------|------------------|-------|------------------|--------|----------|-------|---------|
| HP1  | 176            | 291.36         | 311.96           | 8.3   | 8.8              | 4.0    | 3.1      | 0.1   | W,Z     |
| HP2  | 557            | 562.316        | 565.417          | 0.2   | 0.3              | 0.3    | 0.2      | -     |         |
| HP3  | 560            | 616.32         | 633.48           | 0.1   | 0.2              | 0.2    | 0.1      | 0.003 |         |
| HP4  | 571            | 676.534        | 682.54           | 0.1   | 0.1              | 0.1    | 0.08     | 0.005 | W,Z     |
| HP5  | 671            | 688.108        | 688.437          | 0.07  | 0.1              | 0.09   | 0.07     | -     |         |
| HP6  | 713            | 716.444        | 723.045          | 0.05  | 0.07             | 0.07   | 0.05     | -     |         |
| HP7  | 807            | 813.369        | 818.001          | 0.03  | 0.04             | 0.04   | 0.03     | -     |         |
| HP8  | 933            | 939.968        | 943.787          | 0.01  | 0.02             | 0.02   | 0.01     | -     |         |
| HP9  | 935            | 986.22         | 987.975          | 0.009 | 0.01             | 0.01   | 0.009    | -     |         |
| HP10 | 990            | 992.36         | 998.12           | 0.07  | 0.01             | 0.01   | 0.008    | -     |         |
| HP11 | 250.5          | 265.49         | 287.226          | 5.8   | 6.3              | 5.7    | 4.0      | -     |         |
| HP12 | 286.05         | 294.617        | 332.457          | 3.6   | 3.6              | 3.4    | 2.2      | 0.003 |         |
| HP13 | 336            | 353.264        | 360.568          | 1.7   | 2.2              | 2.0    | 1.5      | 0.001 |         |
| HP14 | 326.55         | 331.938        | 381.773          | 2.1   | 2.0              | 2.0    | 1.2      | -     |         |
| HP15 | 357.6          | 399.998        | 402.568          | 1.1   | 1.5              | 1.2    | 1.0      | 0.006 |         |
| HP16 | 387.75         | 406.118        | 413.464          | 0.9   | 1.2              | 1.1    | 0.8      | -     |         |
| HP17 | 430.95         | 433.226        | 440.624          | 0.6   | 0.8              | 0.8    | 0.6      | -     |         |
| HP18 | 428.25         | 453.979        | 459.696          | 0.6   | 0.8              | 0.7    | 0.5      | -     |         |
| HP19 | 467.85         | 488.604        | 492.329          | 0.4   | 0.5              | 0.5    | 0.4      | -     |         |
| HP20 | 505.2          | 516.58         | 543.794          | 0.3   | 0.4              | 0.3    | 0.2      | -     |         |

**Production cross sections in fb, at 13 TeV** [UFO+Madgraph] > 1000 events at HL-LHC for each process: HP1, HP11-19

문 > 문

Image: A mathematical states and a mathem



at high masses, **increase up to one order of magnitude** all BPs and HPs more than 1000 events for total run

Tania Robens

IDM

WG3 subgroup, 24.10.18

## Appendix

Tania Robens

## Low mass benchmark points [arXiv:1809.07712]

#### Backup slide



#### Low mass IDM benchmark points

| No.  | M <sub>H</sub> | M <sub>A</sub> | M <sub>H±</sub> | $\lambda_2$ | $\lambda_{345}$ | $\Omega_c h^2$ |
|------|----------------|----------------|-----------------|-------------|-----------------|----------------|
| BP1  | 72.77          | 107.8          | 114.6           | 1.445       | -0.004407       | 0.1201         |
| BP2  | 65             | 71.53          | 112.8           | 0.7791      | 0.0004          | 0.07081        |
| BP3  | 67.07          | 73.22          | 96.73           | 0           | 0.00738         | 0.06162        |
| BP4  | 73.68          | 100.1          | 145.7           | 2.086       | -0.004407       | 0.08925        |
| BP5  | 55.34          | 115.4          | 146.6           | 0.01257     | 0.0052          | 0.1196         |
| BP6  | 72.14          | 109.5          | 154.8           | 0.01257     | -0.00234        | 0.1171         |
| BP7  | 76.55          | 134.6          | 174.4           | 1.948       | 0.0044          | 0.0314         |
| BP8  | 70.91          | 148.7          | 175.9           | 0.4398      | 0.0051          | 0.124          |
| BP9  | 56.78          | 166.2          | 178.2           | 0.5027      | 0.00338         | 0.08127        |
| BP10 | 76.69          | 154.6          | 163             | 3.921       | 0.0096          | 0.02814        |
| BP11 | 98.88          | 155            | 155.4           | 1.181       | -0.0628         | 0.002737       |
| BP12 | 58.31          | 171.1          | 173             | 0.5404      | 0.00762         | 0.00641        |
| BP13 | 99.65          | 138.5          | 181.3           | 2.463       | 0.0532          | 0.001255       |
| BP14 | 71.03          | 165.6          | 176             | 0.3393      | 0.00596         | 0.1184         |
| BP15 | 71.03          | 217.7          | 218.7           | 0.7665      | 0.00214         | 0.1222         |
| BP16 | 71.33          | 203.8          | 229.1           | 1.03        | -0.00122        | 0.1221         |
| BP17 | 55.46          | 241.1          | 244.9           | 0.289       | -0.00484        | 0.1202         |
| BP18 | 147            | 194.6          | 197.4           | 0.387       | -0.018          | 0.001772       |
| BP19 | 165.8          | 190.1          | 196             | 2.768       | -0.004          | 0.002841       |
| BP20 | 191.8          | 198.4          | 199.7           | 1.508       | 0.008           | 0.008494       |
| BP21 | 57.48          | 288            | 299.5           | 0.9299      | 0.00192         | 0.1195         |
| BP22 | 71.42          | 247.2          | 258.4           | 1.043       | -0.00406        | 0.1243         |
| BP23 | 62.69          | 162.4          | 190.8           | 2.639       | 0.0056          | 0.06404        |

A.F.Żarnecki (University of Warsaw) Tania Robens Inert Scalars @ CLIC

August 28, 2018 21 / 21 WG3 subgroup, 24,10,18

æ

## High mass benchmark points [arXiv:1809.07712]

#### Backup slide



#### High mass IDM benchmark points

| No.  | M <sub>H</sub> | M <sub>A</sub> | $M_{H^{\pm}}$ | $\lambda_2$ | $\lambda_{345}$ | $\Omega_c h^2$ |
|------|----------------|----------------|---------------|-------------|-----------------|----------------|
| HP1  | 176            | 291.4          | 312           | 1.49        | -0.1035         | 0.0007216      |
| HP2  | 557            | 562.3          | 565.4         | 4.045       | -0.1385         | 0.07209        |
| HP3  | 560            | 616.3          | 633.5         | 3.38        | -0.0895         | 0.001129       |
| HP4  | 571            | 676.5          | 682.5         | 1.98        | -0.471          | 0.0005635      |
| HP5  | 671            | 688.1          | 688.4         | 1.377       | -0.1455         | 0.02447        |
| HP6  | 713            | 716.4          | 723           | 2.88        | 0.2885          | 0.03515        |
| HP7  | 807            | 813.4          | 818           | 3.667       | 0.299           | 0.03239        |
| HP8  | 933            | 940            | 943.8         | 2.974       | -0.2435         | 0.09639        |
| HP9  | 935            | 986.2          | 988           | 2.484       | -0.5795         | 0.002796       |
| HP10 | 990            | 992.4          | 998.1         | 3.334       | -0.051          | 0.1248         |
| HP11 | 250.5          | 265.5          | 287.2         | 3.908       | -0.1501         | 0.00535        |
| HP12 | 286.1          | 294.6          | 332.5         | 3.292       | 0.1121          | 0.00277        |
| HP13 | 336            | 353.3          | 360.6         | 2.488       | -0.1064         | 0.00937        |
| HP14 | 326.6          | 331.9          | 381.8         | 0.02513     | -0.06267        | 0.00356        |
| HP15 | 357.6          | 400            | 402.6         | 2.061       | -0.2375         | 0.00346        |
| HP16 | 387.8          | 406.1          | 413.5         | 0.8168      | -0.2083         | 0.0116         |
| HP17 | 430.9          | 433.2          | 440.6         | 3.003       | 0.08299         | 0.0327         |
| HP18 | 428.2          | 454            | 459.7         | 3.87        | -0.2812         | 0.00858        |
| HP19 | 467.9          | 488.6          | 492.3         | 4.122       | -0.252          | 0.0139         |
| HP20 | 505.2          | 516.6          | 543.8         | 2.538       | -0.354          | 0.00887        |

A.F.Żarnecki (University of Warsaw) Tania Robens Inert Scalars @ CLIC

August 28, 2018 21 / 21 WG3 subgroup, 24,10,18

æ

## Low mass benchmark points [Points from arXiv:1809.07712]

| No.  | M <sub>H</sub> | M <sub>A</sub> | M <sub>H</sub> ± | HA   | $HH^+$ | AH <sup>+</sup> | $H^+H^-$ | AA    |
|------|----------------|----------------|------------------|------|--------|-----------------|----------|-------|
| BP1  | 72.77          | 107.803        | 114.639          | 846  | 770    | 440             | 364      | 1.5   |
| BP2  | 65             | 71.525         | 112.85           | 2535 | 909    | 813             | 384      | 0.5   |
| BP3  | 67.07          | 73.222         | 96.73            | 2268 | 1245   | 1102            | 642      | 0.5   |
| BP4  | 73.68          | 100.112        | 145.728          | 982  | 432    | 307             | 165      | 1.1   |
| BP6  | 72.14          | 109.548        | 154.761          | 824  | 379    | 241             | 135      | 1.6   |
| BP7  | 76.55          | 134.563        | 174.367          | 470  | 266    | 143             | 91       | 1.9   |
| BP8  | 70.91          | 148.664        | 175.89           | 395  | 276    | 122             | 89       | 2.3   |
| BP9  | 56.78          | 166.22         | 178.24           | 347  | 308    | 100             | 86       | 2.8   |
| BP10 | 76.69          | 154.579        | 163.045          | 332  | 315    | 131             | 114      | 2.2   |
| BP11 | 98.88          | 155.037        | 155.438          | 249  | 271    | 142             | 131      | 1.0   |
| BP12 | 58.31          | 171.148        | 172.96           | 313  | 330    | 100             | 95       | 2.8   |
| BP13 | 99.65          | 138.484        | 181.321          | 317  | 189    | 127             | 80       | 1.3   |
| BP14 | 71.03          | 165.604        | 175.971          | 297  | 275    | 102             | 89       | 2.4   |
| BP15 | 71.03          | 217.656        | 218.738          | 138  | 152    | 44              | 44       | 2.4   |
| BP16 | 71.33          | 203.796        | 229.092          | 167  | 133    | 45              | 38       | 2.4   |
| BP18 | 147            | 194.647        | 197.403          | 90   | 98     | 64              | 58       | 0.5   |
| BP19 | 165.8          | 190.082        | 195.999          | 78   | 84     | 67              | 58       | 0.02  |
| BP20 | 191.8          | 198.376        | 199.721          | 57   | 64     | 61              | 54       | 0.002 |
| BP21 | 57.475         | 288.031        | 299.536          | 65   | 66     | 15              | 17       | 2.2   |
| BP22 | 71.42          | 247.224        | 258.382          | 95   | 95     | 26              | 26       | 2.2   |
| BP23 | 62.69          | 162.397        | 190.822          | 346  | 240    | 91              | 69       | 2.6   |

#### Production cross sections in fb, at 27 TeV [UFO+Madgraph]

Image: A (1)

Image: A math a math

IDM

## High mass benchmark points [Points from arXiv:1809.07712]

| No.  | M <sub>H</sub> | M <sub>A</sub> | M <sub>H±</sub> | HA   | $HH^+$ | $AH^+$ | $H^+H^-$ | AA    |
|------|----------------|----------------|-----------------|------|--------|--------|----------|-------|
| HP1  | 176            | 291.36         | 311.96          | 29   | 28     | 14     | 13       | 0.8   |
| HP2  | 557            | 562.316        | 565.417         | 1.1  | 1.4    | 1.4    | 1.1      | -     |
| HP3  | 560            | 616.32         | 633.48          | 0.9  | 1.1    | 0.9    | 0.8      | 0.03  |
| HP4  | 571            | 676.534        | 682.54          | 0.7  | 0.9    | 0.6    | 0.6      | 0.06  |
| HP5  | 671            | 688.108        | 688.437         | 0.5  | 0.6    | 0.6    | 0.5      | 0.002 |
| HP6  | 713            | 716.444        | 723.045         | 0.4  | 0.5    | 0.5    | 0.4      | -     |
| HP7  | 807            | 813.369        | 818.001         | 0.2  | 0.3    | 0.3    | 0.2      | -     |
| HP8  | 933            | 939.968        | 943.787         | 0.1  | 0.2    | 0.2    | 0.1      | -     |
| HP9  | 935            | 986.22         | 987.975         | 0.1  | 0.1    | 0.1    | 0.1      | 0.004 |
| HP10 | 990            | 992.36         | 998.12          | 0.09 | 0.1    | 0.1    | 0.09     | -     |
| HP11 | 250.5          | 265.49         | 287.226         | 21   | 21     | 20     | 15       | 0.005 |
| HP12 | 286.05         | 294.617        | 332.457         | 14   | 13     | 12     | 9.1      | 0.02  |
| HP13 | 336            | 353.264        | 360.568         | 7.2  | 8.4    | 7.8    | 6.5      | 0.01  |
| HP14 | 326.55         | 331.938        | 381.773         | 8.5  | 7.9    | 7.8    | 5.4      | -     |
| HP15 | 357.6          | 399.998        | 402.568         | 5.0  | 6.1    | 5.0    | 4.3      | 0.04  |
| HP16 | 387.75         | 406.118        | 413.464         | 4.2  | 5.0    | 4.7    | 3.9      | 0.004 |
| HP17 | 430.95         | 433.226        | 440.624         | 3.0  | 3.6    | 3.7    | 3.0      | -     |
| HP18 | 428.25         | 453.979        | 459.696         | 2.8  | 3.4    | 3.1    | 2.6      | 0.008 |
| HP19 | 467.85         | 488.604        | 492.329         | 2.0  | 2.5    | 2.4    | 2.0      | 0.004 |
| HP20 | 505.2          | 516.58         | 543.794         | 1.6  | 1.8    | 1.7    | 1.3      | -     |

#### Production cross sections in fb, at 27 TeV [UFO+Madgraph]

Tania Robens

- 2

• • • • • • • • • • •

## Effect of updated constraints [especially: XENON1T] [1805.12562]

LUX

#### **XENON**



## Cases where $M_H \leq M_h/2$

- discussion so far: decay  $h \rightarrow HH$  kinematically not accessible
- for these cases, discussion along different lines
- ⇒ extremely strong constraints from signal strength, and dark matter requirements



• additional constraints from combination of *W*, *Z* decays and recasted analysis at LEP

lower limit  $M_H \sim 50 \,\mathrm{GeV}$ 

Tania Robens

WG3 subgroup, 24.10.18

## Benchmark planes for LHC [XENON/ Signal rates improved] [YREP 4]



Figure : Production cross sections in pb at a 13 TeV LHC - OQC Tania Robers

## Things I did not talk about

- similar scan, with focus on low mass regime: A. Belyaev ea [arXiv:1612.00511]
- $\Rightarrow$  results agree, but more explicit plots for low mass range
- $\Rightarrow$  more parameter points in the low- $m_H$  region
- ⇒ find same lowest mass for dark matter candidate
  - also important: recasts for LHC, e.g. Belanger ea [Phys.Rev. D91 (2015) no.11, 115011]; A. Belyaev ea [arXiv:1612.00511]

## $\implies$ should/ could be turned around to devise optimized search strategies $\Longleftarrow$

so far,  $\implies$  no (!) experimental study is publicly available interpreting in the IDM framework !!  $\Leftarrow$ 

- 2

# Very brief: parameters determining couplings (production and decay)

dominant production modes: through Z; Z,  $\gamma$ , h for AH; H<sup>+</sup>H<sup>-</sup> important couplings:

• 
$$Z H A$$
:  $\sim \frac{e}{s_W c_W}$   
•  $Z H^+ H^-$ :  $\sim e \operatorname{coth} (2\theta_w$   
•  $\gamma H^+ H^-$ :  $\sim e$   
•  $h H^+ H^-$ :  $\lambda_3 v$   
•  $H^+ W^+ H$ :  $\sim \frac{e}{s_W}$ 

•  $H^+ W^+ A$ :  $\sim \frac{e}{s_w}$ 

#### **!!** mainly determined by electroweak SM parameters **!!**

Tania Robens

WG3 subgroup, 24.10.18

< □ > < @ > <

E 990

## Aside: typical BRs [old values]

- decay  $A \rightarrow HZ$  always 100 %
- decay  $H^{\pm} \rightarrow H W^{\pm}$



second channel  $H^{\pm} \rightarrow A W^{\pm}$ 

 $\implies$  collider signature: SM particles and MET  $\Leftarrow$ 

Tania Robens

WG3 subgroup, 24.10.18

## Total widths in IDM scenario [old]



Figure : Total widths of unstable dark particles: A and  $H^\pm$  in plane of their and dark matter masses.

Tania Robens

WG3 subgroup, 24.10.18

## Dark matter relic density



all but DM constraints

all but DM constraints

WG3 subgroup, 24.10.18

Tania Robens

IDM

## Dark matter relic density: exact limit vs upper bound



 $\Omega$  vs  $m_H$ , all but DM constraints sample plot,  $M_H$  vs.  $M_{H^{\pm}}$ 

#### **General scan results**

- ⇒ window with  $m_H \in [100 \, \text{GeV}; 600 \, \text{GeV}]$  which cannot provide exact DM
- ⇒ only few points in a general scan [more can be found using finetuned scans]

Tania Robens

WG3 subgroup, 24.10.18

## Dominant annihilation channels for the IDM



- dominant = largest contribution can be 51 % vs 49 %...
- as obtained from MicroMegas 4.3.5
- interesting/ promising:  $A H \rightarrow d \bar{d}$ ; needs further investigation

Tania Robens

(日)

WG3 subgroup, 24,10,18

# Combination of ew gauge boson total widths and LEP recast

• decays widths W, Z: kinematic regions

$$M_{A,H} + M_H^{\pm} \geq m_W, M_A + M_H \geq m_Z, 2 M_H^{\pm} \geq m_Z.$$

• LEP recast (Lundstrom 2008)

 $M_A \leq 100 \,\mathrm{GeV}, \, M_H \leq 80 \,\mathrm{GeV}, \Delta M \geq 8 \,\mathrm{GeV}$ 

#### combination leads to

- $M_H \in [0; 41 \,\mathrm{GeV}]: M_A \ge 100 \,\mathrm{GeV},$
- $M_H \in [41; 45 \text{GeV}]$ :  $M_A \in [m_Z M_H; M_H + 8 \text{GeV}]$  or  $M_A > 100 \text{ GeV}$
- $M_H \in [45; 80 {
  m GeV}]$ :  $M_A \in [M_H; M_H + 8 {
  m GeV}]$  or  $M_A \ge 100 {
  m GeV}$

Tania Robens

Image: A math a math

## Last comment: IDM tools for LHC phenomenology

- leading order production and decay: Madgraph5, + (currently) private version for ggh (top loop in  $m_{top} \rightarrow \infty$  limit)
- in principle available: gg @ NLO, MG5 (needs however modification of current codes, not straightforward)
- IMHO: currently LO sufficient

A B > 
 A
 B > 
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- 3

WG3 subgroup, 24,10,18

If  $\Omega < \Omega_{\text{DM}}^{\text{Planck}}$ : what does it mean ?

⇒ one possible understanding: Multi-component dark matter

• in practise: direct detection limits relaxed, according to

$$\sigma(M_H) \leq \sigma^{\mathsf{LUX}}(M_H) imes rac{\Omega^{\mathsf{Planck}}}{\Omega(M_H)}$$

⇒ in practise: larger parameter space for  $\lambda_{345}$ ⇒ influences especially AA production

Tania Robens

## AA production with rescaled dark matter

## before: $\sigma_{AA}^{13\,{\rm TeV}} \leq 0.0015\,{\rm pb}$



#### strongest constraint now : $BR_{h \rightarrow \gamma\gamma}$

Tania Robens

WG3 subgroup, 24.10.18

• • • • • • • •