A benchmark for LHC searches for  $H_5^{\pm\pm}$ ,  $H_5^{\pm}$ , and  $H_5^0$  in the Georgi-Machacek model including masses below 200 GeV

<sup>1</sup>Cornell University <sup>2</sup>Carleton University

LHC Higgs Cross Section Working Group 3, October 24 2018

## Introduction

Exotic contributions to electroweak symmetry breaking (EWSB)

- Can we have some significant fraction of EWSB from SU(2)<sub>L</sub> representations larger than doublet?
- Yes, models include Georgi-Machacek model (GM), generalizations of GM to higher isospin and septet model
- common feature: all contain fermiophobic singly and double charged Higgs bosons

Georgi-Machacek model

- adds real and complex triplets to SM higgs sector
- ► Fermiophobic scalars so-called custodial fiveplet H<sup>±±</sup><sub>5</sub>, H<sup>±</sup><sub>5</sub>, and H<sup>0</sup><sub>5</sub>, degenerate with mass m<sub>5</sub>
- coupling to vector bosons is parameterized by s<sub>H</sub> which is proportional to triplets vev

## Searches for $H_5$ states

Current searches for  $H_5$  production focus on masses of 200 GeV and above where decays to vector bosons are on shell

- ► In particular, ATLAS search for Drell-Yan production of H<sub>5</sub><sup>++</sup>H<sub>5</sub><sup>--</sup> to like-sign W only for masses above 200 GeV (arXiv:1808.01899)
  - If extended below 200 GeV and using full Run 2 data-set would probe entire low mass region independent of s<sub>H</sub>
  - Could excluded all H<sub>5</sub> masses below 200-300 GeV
- Need a benchmark valid in low mass region

## Low *m*<sub>5</sub> benchmark

| Fixed inputs                     | Variable parameters           | Other parameters                                       |
|----------------------------------|-------------------------------|--------------------------------------------------------|
| $G_F = 1.1663787 \times 10^{-5}$ | $m_5 \in (50, 550)  { m GeV}$ | $\lambda_2 = 0.08 (m_5/100  { m GeV})$                 |
| $m_h=125{ m GeV}$                | $s_{H} \in (0,1)$             | $\lambda_3 = -1.5$                                     |
|                                  |                               | $\lambda_4 = -\lambda_3 = 1.5$                         |
|                                  |                               | $\lambda_5 = -4\lambda_2 = -0.32(m_5/100 \text{ GeV})$ |
|                                  |                               | $M_2 = 10 \mathrm{GeV}$                                |

Design consideration of the benchmark

- Couplings of h should to be close to SM values
  - $\blacktriangleright$  Need to avoid modification from scalar loops of  $h\to\gamma\gamma$
- $m_5$  should be less than  $m_3$
- ► Sufficiently large portion of m<sub>5</sub> s<sub>H</sub> plane should be allowed by theoretical and indirect constraints for m<sub>5</sub> below 200 GeV

(Still a work in progress and all plots should be considered preliminary)

# Populated range in $m_5 - s_H$ plane and existing constraints

Theoretically allowed points in a scan of the benchmark versus a general parameter scan with and without Run 1 constraints for  $H_5^{++}$ 



- Below 200 GeV populates almost entire theoretically allowed region
- ► Falls off above 200 GeV but covers full range where expect senstivity of Run 2 search for Drell-Yan H<sup>++</sup><sub>5</sub> H<sup>--</sup><sub>5</sub>

## Populated range in $m_5 - s_H$ plane and existing constraints

Constraints from neutral  $H_5$ 



H<sup>0</sup><sub>5</sub> → γγ excludes masses below 130 GeV and s<sub>H</sub> ≥ 0.1
 Drell-Yan H<sup>0</sup><sub>5</sub>H<sup>+</sup><sub>5</sub> with H<sup>0</sup><sub>5</sub> → γγ excludes m<sub>5</sub> between 65 and 120 GeV

# Decays of the $H_5$



- Only allowed  $H_5^{++}$  decay is to  $W^+W^+$
- H<sub>5</sub><sup>+</sup> decays to WZ at tree level but below 200 GeV loop decay to W γ becomes large
- ▶  $H_5^0$  decays to VV at tree level but below 200 GeV loop decay to  $\gamma\gamma$  becomes large
  - exclusion at branching ratio of around 10%

# Mass splittings within the benchmark



- Have  $m_5 < m_3$  and  $m_5 < m_H$  as required
- ▶ But for  $m_5$  below 210 GeV have  $m_H > 2m_5$  so  $H \rightarrow H_5H_5$  is allowed
- Can have contribution to total H<sub>5</sub> pair production rate from H decaying to H<sub>5</sub> pairs
  - ► Model dependent effect and can be ignored when setting bounds on H<sub>5</sub><sup>++</sup>H<sub>5</sub><sup>-−</sup> Drell-Yan production

## Conclusions

- Have viable low mass benchmark scenario which populates almost all of allowed parameter space
- A low mass  $H_5^{++}$  search could excluded entire parameter space
- We are planning a more complete benchmark characterization study and any feedback would be appreciated

# Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Backup Slides- H5N Decay Widths





11/15

## Backup Slides- h couplings







12/15

#### Backup Slides- H Decays to scalars



#### Backup Slides- GM

Add real triplet  $\xi$  and complex triplet  $\chi$  to SM doublet  $\phi$ . To make global SU(2)<sub>L</sub>×SU(2)<sub>R</sub> symmetry explicit, we write

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{+*} & \phi^{0} \end{pmatrix}, \qquad (1)$$
$$X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix}. \qquad (2)$$

The vevs are defined by  $\langle \Phi \rangle = \frac{v_{\phi}}{\sqrt{2}} I_{2 \times 2}$  and  $\langle X \rangle = v_{\chi} I_{3 \times 3}$ , where  $I_{n \times n}$  is the unit matrix and the W and Z boson masses constrain

$$v_{\phi}^2 + 8v_{\chi}^2 \equiv v^2 = \frac{4M_W^2}{g^2} \approx (246 \text{ GeV})^2.$$
 (3)

#### Backup Slides- GM-2

Scalar potential is:

$$V(\Phi, X) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger}\Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(X^{\dagger}X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger}\Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger}\Phi) \operatorname{Tr}(X^{\dagger}X) + \lambda_3 \operatorname{Tr}(X^{\dagger}XX^{\dagger}X) + \lambda_4 [\operatorname{Tr}(X^{\dagger}X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger}\tau^a \Phi \tau^b) \operatorname{Tr}(X^{\dagger}t^a Xt^b) - M_1 \operatorname{Tr}(\Phi^{\dagger}\tau^a \Phi \tau^b) (UXU^{\dagger})_a - M_2 \operatorname{Tr}(X^{\dagger}t^a Xt^b) (UXU^{\dagger})_{ab}$$
(4)

and the masses are given by:

$$m_5^2 = \frac{M_1}{4v_{\chi}}v_{\phi}^2 + 12M_2v_{\chi} + \frac{3}{2}\lambda_5v_{\phi}^2 + 8\lambda_3v_{\chi}^2,$$
  

$$m_3^2 = \frac{M_1}{4v_{\chi}}(v_{\phi}^2 + 8v_{\chi}^2) + \frac{\lambda_5}{2}(v_{\phi}^2 + 8v_{\chi}^2) = \left(\frac{M_1}{4v_{\chi}} + \frac{\lambda_5}{2}\right)v^2.(5)$$