ALICE Masterclasses at GSI

Ralf Averbeck
GSI Helmholtzzentrum für Schwerionenforschung
Darmstadt, Germany

17th IPPOG Meeting

Darmstadt,

May 23, 2019

ALICE

heavy-ion experiment at the LHC

→ investigation of quark-gluon plasma properties

- central Pb-Pb collision
 with total collision energy
 above 1 PeV:
 ~3200 primary, charged
 particle tracks in |η|<0.9
- main tracking device:Time Projection Chamber
- → major GSI involvement

Masterclasses at GSI: since 2013

- yearly participation in the International Masterclass
- additional events in local schools and at GSI (yesterday: Masterclass for children of FAIR/GSI employees)

- measurement: nuclear modification factor R_{AA}
 - can we witness quarks/gluons loosing energy when they propagate through a QGP produced in central Pb-Pb collisions?
 → current Masterclass workhorse at GSI

Nuclear modification factor RAA

- - ratio of yields of charged particles produced in Pb-Pb and pp collisions, taking into account the collision geometry
 - R_{AA}<1 implies quark/gluon energy loss in the QGP

measurement

- necessary concepts:
 - charged-particle momentum
 - collision centrality
- event-display based visual analysis
 → R_{AA} simply via counting of tracks
- ROOT based large scale analysis
 → R_{AA} as a function of momentum and collision centrality
 - → students discover jet suppression!

R_{AA} measurement: pros & cons

advantages

- genuine heavy-ion physics observable
- no need for difficult concepts
- teaches the value of collaborative work

disadvantages

- large-scale analysis challenging without programming experience
- challenging to complete the full measurement in time
- no use of particle identification techniques

action taken

- various versions developed (all work well for their purpose)
 - "full", "copy and paste", "demonstration" version

→ development of a new ALICE Masterclass on J/ψ

- main emphasis: particle (electron) identification
- other necessary concepts: decay, invariant mass, combinatorial background
- no programming skills needed

J/ψ Masterclass: the GUI

inspired by R_{AA} Masterclass

developed mainly byS. Weber (Münster)

workflow

- load chargedparticle tracks
- fill PID histogram
- define PID selection
- fill inv. mass histograms
- extract J/ψ yield

J/ψ Masterclass: PID in pp

electron selection in dE/dx vs. p

J/ψ Masterclass: meein pp

J/ψ signal extraction via invariant mass analysis

observations

- signal emerges and can be quantified
 - yield
 - S/B
 - significance

⊗ ☐
Instructions
min max
mass range 2.8 3.2
Extract Signal
Number of Jpsis 303
Signal/Background 1.34667
Significance 13,1864
Close

J/ψ Masterclass: pp vs. p-Pb

combinatorial background grows with multiplicity

- signal extraction much more challenging in larger systems
- going to Pb-Pb collisions to make connection with heavy-ion physics
 - being discussed

Masterclasses at GSI: next steps

- signal extraction part of J/ψ Masterclass is ready
- → will be tested in a pilot run on June 7, 2019
 - physics class from Eleonorenschule, Darmstadt
 - 6 out of 22 students have experience with the ALICE R_{AA} Masterclass!
- looking forward to further ALICE R_{AA} and also J/ψ
 Masterclasses in the future

