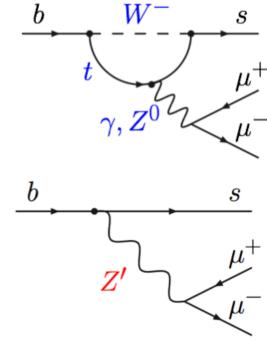
Rare Decays

31st Rencontres de Blois on Particle Physics and Cosmology 4th June 2019


> Mitesh Patel (Imperial College London) on behalf of the LHCb collaboration with results from ATLAS, BaBar, Belle and CMS

Imperial College London

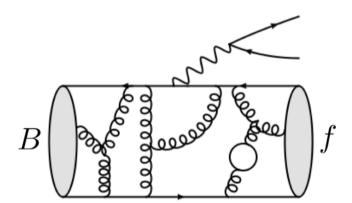
Introduction

- Rare decays are excellent candidates for indirect searches for new physics (NP) e.g. b→sl⁺l⁻ decays
- Strongly suppressed in the SM as
 - involve Flavour Changing Neutral Currents
 (FCNC) arise only at the loop level
 - quark-mixing is hierarchical (off-diagonal CKM elements ≪ 1)
 - GIM mechanism
 - only the left-handed chirality participates in flavour-changing interactions

 But these conditions do not necessarily apply to physics beyond the SM!

Outline

- Theoretical framework
- Status of rare decay measurements
- Impact on global picture and connection to other processes
- Future prospects and conclusions


Outline

- Theoretical framework
- Status of rare decay measurements
- Impact on global picture and connection to other processes
- Future prospects and conclusions

Choosing observables

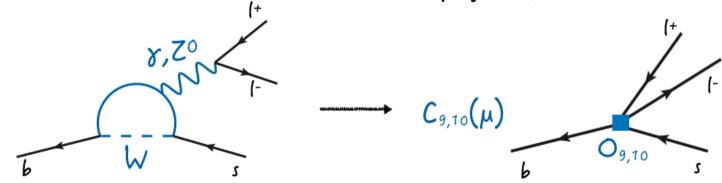
Observe hadronic decay, not the quark-level transition
 ⇒ Need to compute hadronic matrix elements (form-factors and decay constants)

•
$$b \rightarrow s\mu\mu = \Rightarrow B^+ \rightarrow K^+\mu^+\mu^-, B^0 \rightarrow K^{*0}\mu^+\mu^-, B_s \rightarrow \phi\mu^+\mu^-...$$

→ Non-perturbative QCD, *i.e.* difficult to compute

(Lattice QCD, QCD factorisation, Light-cone sum rules...)

 Hadronic uncertainties cancel in certain observables, making them more sensitive to New Physics

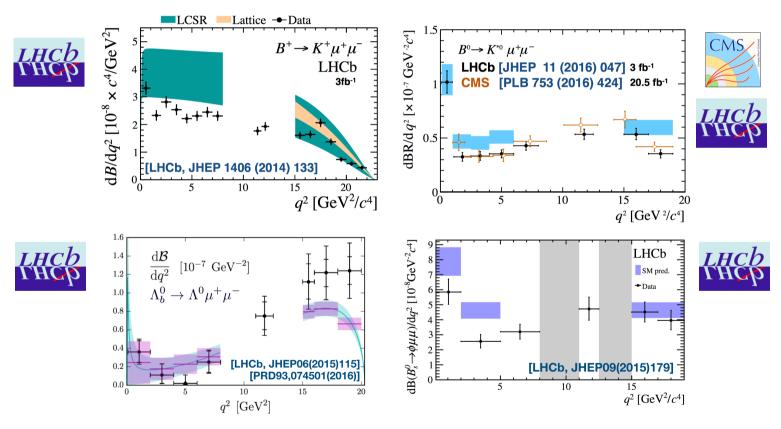

Theoretical framework

 Interactions described in terms of an effective Hamiltonian that describes the full theory at lower energies (µ)

$$\mathcal{H}_{\text{eff}} \sim \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $C_i(\mu) \rightarrow$ Wilson coefficients (perturbative, short-distance physics, sensitive to $E > \mu$)

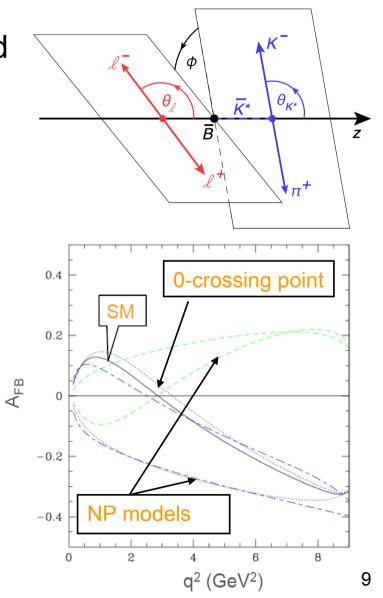
 $O_i \rightarrow Local operators$ (non-perturbative, long-distance physics, sensitive to $E < \mu$)


→ Contributions from New Physics will modify the measured values of WC's or introduce new operators

Outline

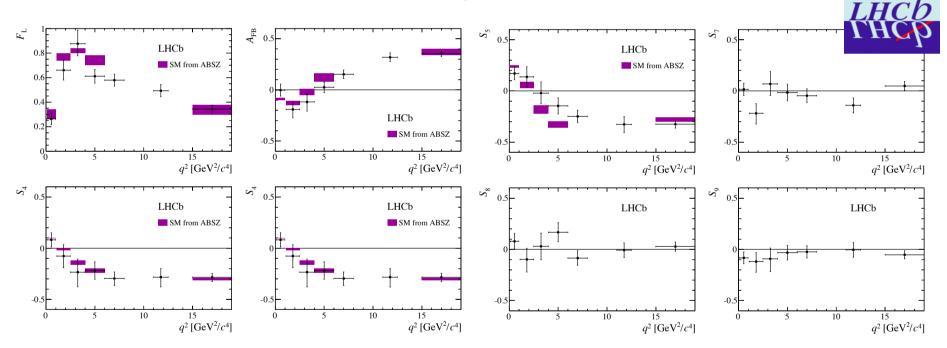
- Theoretical framework
- Status of rare decay measurements
- Impact on global picture and connection to other processes
- Future prospects and conclusions

Branching fraction measurements


 Branching fractions for several b→sµµ processes are below the SM prediction at low q² = [m(l+l-)]²

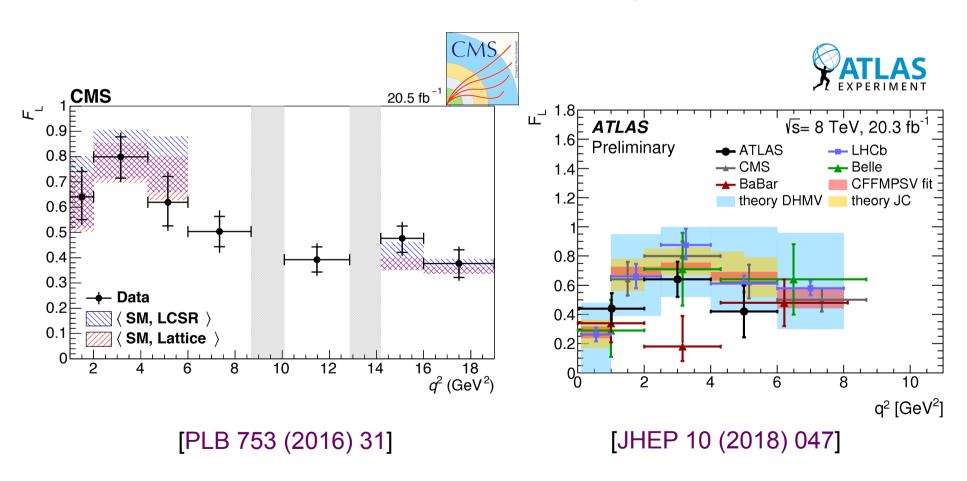
SM predictions suffer from large uncertainties

Angular observables


- Angular observables have reduced dependence on hadronic effects
- Best studied decay B⁰→K*⁰μμ
 - Dynamics can be described by three angles $(\theta_{\text{I}}, \theta_{\text{K}}, \phi)$ and di- μ invariant mass squared, q²
- Large number of observables where theoretical uncertainties cancel to some extent e.g.
 Forward-backward asymmetry A_{FB} of θ_I distn

B⁰→K*⁰μμ angular analysis

- LHCb performed first full angular analysis [JHEP 02 (2016) 104]
 - Extracted the full set of CP-avg'd angular terms and correlations


Determined full set of CP-asymmetries

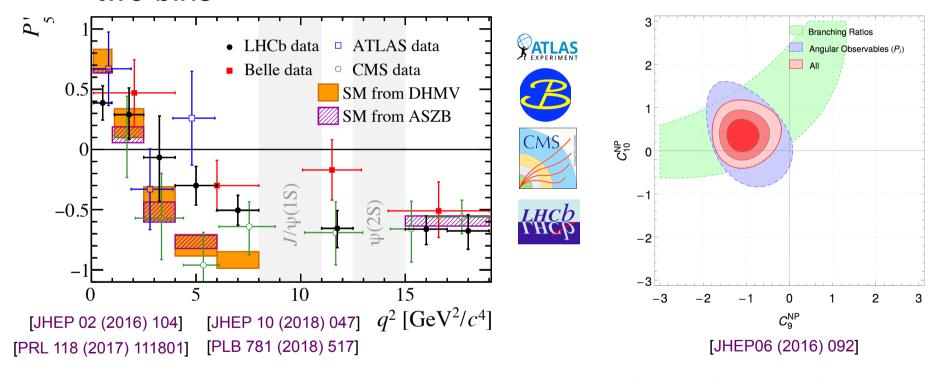
 Vast majority of observables in agreement with SM predns, giving some confidence in theory control of form-factors

B⁰→K*⁰μμ angular analysis

CMS and ATLAS confirm these findings

Form-factor independent obs.

- At low and high q², (leading order) relations between the various form factors allow a number of form-factor "independent" observables to be constructed
- In the region 1<q²<6 GeV², relations reduce the seven B⁰→K*⁰μμ form-factors to just two – allows to form e.g.

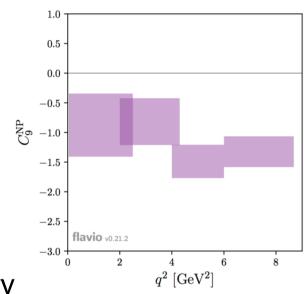

$$P_5' \sim rac{Re(A_0^L A_\perp^{L*} - A_0^R A_\perp^{R*})}{\sqrt{(|A_0^L|^2 + |A_0^R|^2)(|A_\perp^L|^2 + |A_\perp^R|^2 + |A_\parallel^L|^2 + |A_\parallel^R|^2)}}$$

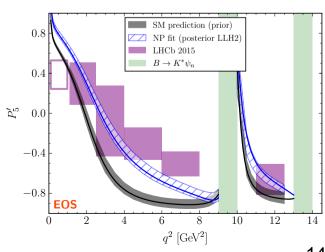
which is form-factor independent at leading order

 In fact, can form a complete basis (P^(') series) in which there are six form-factor independent and two form-factor dependent observables (F_I and A_{FR})

Angular observables

 Form-factor "independent" P₅ has a local discrepancy in two bins


 BF and angular data consistent, best fit prefers shifted vector coupling C₉ (or C₉ and axial-vector C₁₀)

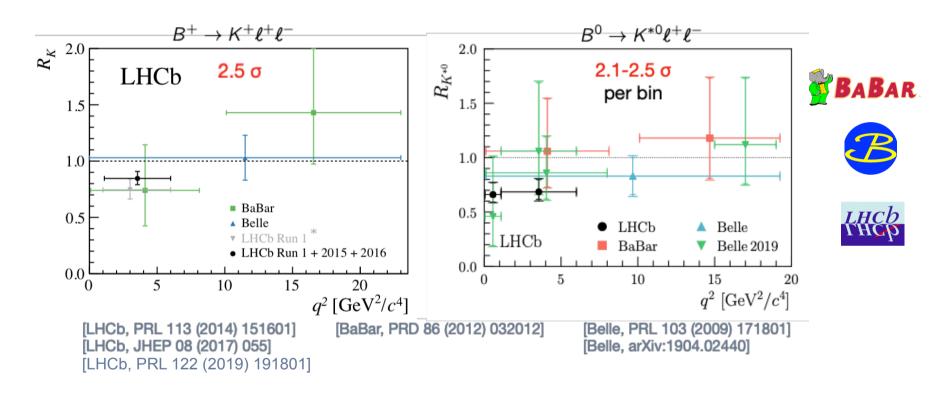

Could the SM predn be wrong?

- Theorists have started to look critically at their predictions O_{1,2} operators have a component that could mimic a NP effect in C₉ through cc loop
 - Look for q² dependence of C₉ shift
 [EPJC 77 (2017) 377]

 Parameterisation to theory and auxiliary data to try and determine cc effect [EPJC 78 (2018) 451]

 No consensus in theory community about the size of such effects

Lepton flavour universality tests

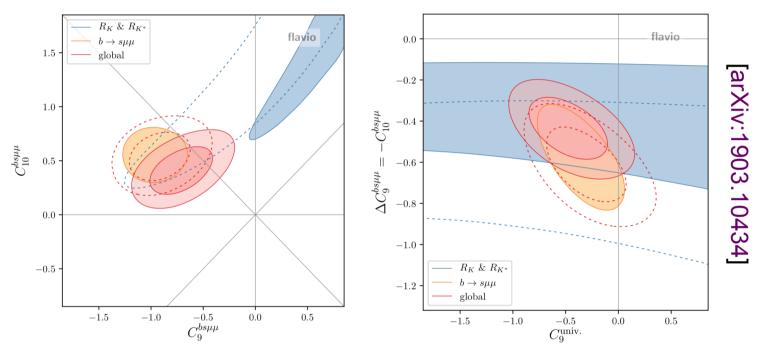

- In the Standard Model, couplings of the gauge bosons to leptons are independent of lepton flavour
- Ratios of the form:

$$R_K = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} \stackrel{\text{SM}}{\cong} 1$$

free from QCD uncertainties that affect other observables

- hadronic effects cancel, error is O(10⁻⁴) [JHEP 07 (2007) 040]
- QED corrections can be O(10⁻²) [EPJC 76 (2016) 440]
- [Theorists in unison:] Any sign of lepton flavour nonuniversality would be an unambiguous sign for New Physics

Status of LFU tests

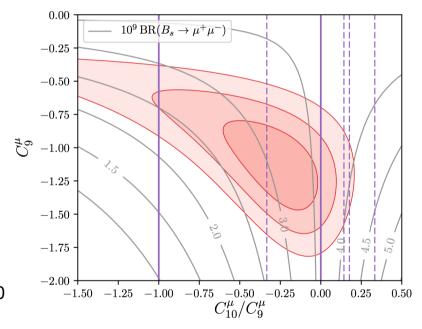


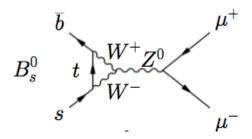
- Intriguing picture: both R_K and R_{K*} results below the SM expectation, although significance low
- Tensions can be explained with anomalous b→sµµ measurements in a coherent NP picture

Outline

- Theoretical framework
- Status of rare decay measurements
- Impact on global picture and connection to other processes
- Future prospects and conclusions

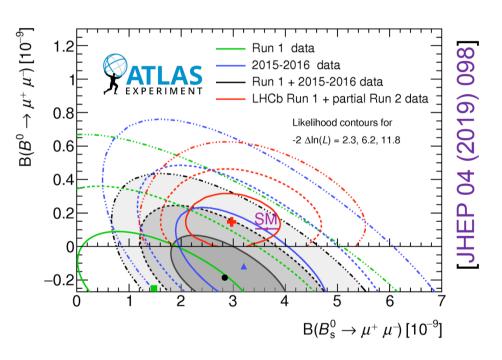
Impact on global fits

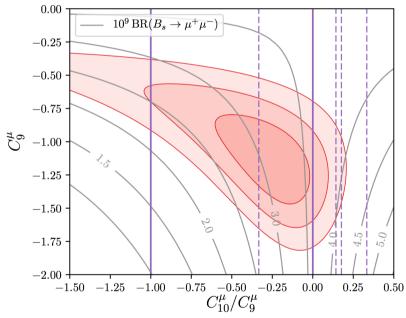


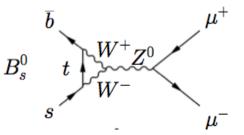

- Best fit point still in tension with the SM
- Muonic NP: best fit closer to the SM, C₉=-C₁₀ still preferred
- Allowing LFU NP: slight preference for universal shift in C₉ [M. Alguero et al., arXiv:1903.09578, A. K. Alok et al., arXiv:1903.09617, M.

Ciuchini et al., arXiv:1903.09632, Guido D'Amico et al., arXiv:1704.05438]

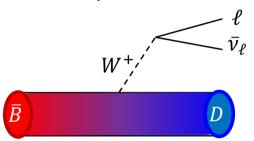
Leptonic decays - $B^0 \rightarrow \mu^+ \mu^-$

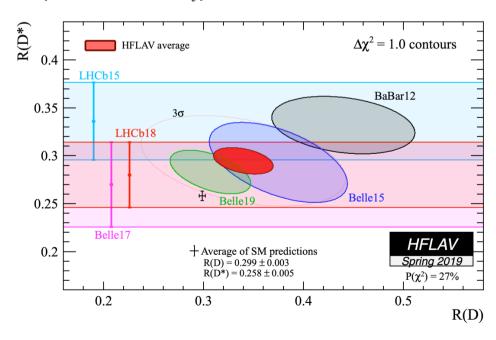

- Many single-particle explanations of anomalies predict $C_9^{NP} = -C_{10}^{NP}$ (data still compatible with such a soln)
- If this were the case would expect to see effect in B⁰→μ⁺μ⁻ decays
 - Dominant contribution from Zpenguin diagram
 - − Precise predictions for BFs : $B(B_s^0 \to \mu\mu) = (3.66 \pm 0.23) \times 10^{-9}$ $B(B_d^0 \to \mu\mu) = (1.06 \pm 0.09) \times 10^{-10}$
 - Can be altered by modified C₁₀
 or new scalar/pseudoscalar
 (C_{s.P}) [high tan β SUSY]




Leptonic decays - $B^0 \rightarrow \mu^+ \mu^-$

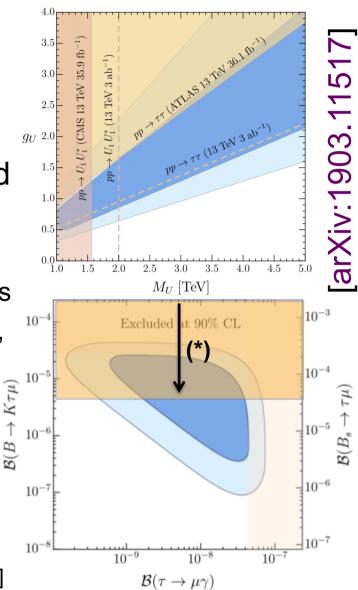
• Many single-particle explanations of anomalies predict $C_9^{NP} = -C_{10}^{NP}$ (data still compatible with such a soln)


 No evidence for any deviation from SM so far...

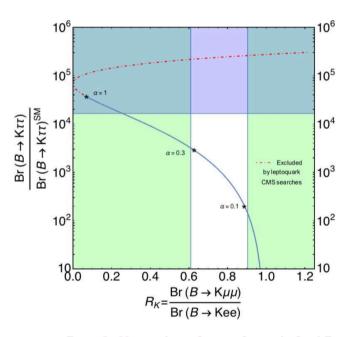


Semileptonic decays

- A ~3σ tension with SM also seen in b→c charged current processes (cf. b→s neutral current processes)
 - Tree-level processes in SM
 - Again use lepton universality ratio, R_x

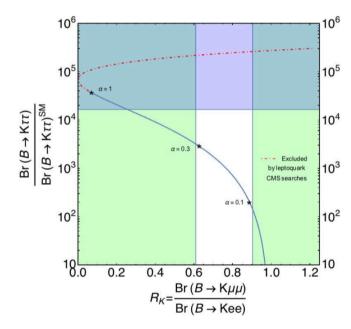

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$$

Model Building


- Can accommodate anomalies with O(TeV)-O(10TeV) new physics
- e.g. Vector LeptoQuark (LQ), coupled mainly to third-generation fermions, able to give pattern anomalies
 - Potentially within reach of direct searches
 - Expect effects in e.g. $B \rightarrow \tau \mu$, $B \rightarrow K\tau \tau$ etc., which can be huge
 - While need LFUV, LFV is not mandatory [arXiv:1505.05164]

(*) Recent LHCb $B \rightarrow \tau \mu$ result [arXiv:1905.06614]

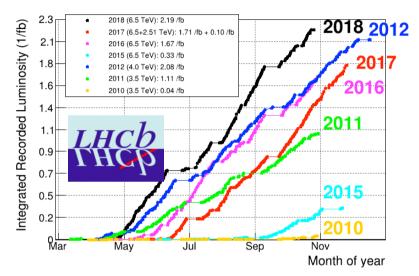
Model Building


- Can accommodate anomalies with O(TeV)-O(10TeV) new physics
- e.g. Vector LeptoQuark (LQ), coupled mainly to third-generation fermions, able to give pattern anomalies
 - Potentially within reach of direct searches
 - Expect effects in e.g. $B \rightarrow \tau \mu$, $B \rightarrow K \tau \tau$ etc., which can be huge
 - While need LFUV, LFV is not mandatory [arXiv:1505.05164]

[arXiv:1505.05164]

Model Building

- Pattern of anomalies can be linked to hierarchical structure of quark and lepton mass matrices through dynamical breaking of flavour symmetry [JHEP 1810 (2018) 148]
- Can also connect to portal models of dark matter [arXiv:1503.06077, PRD 96 (2017) 075041]


[arXiv:1505.05164]

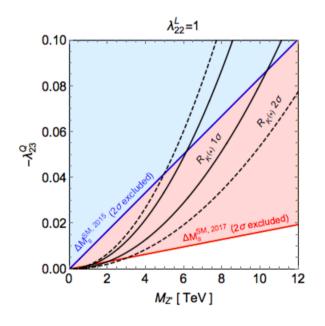
Outline

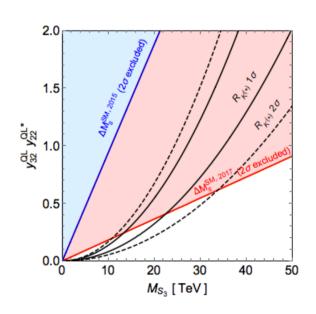
- Theoretical framework
- Status of rare decay measurements
- Impact on global picture and connection to other processes
- Future prospects and conclusions

Future experimental input

- LHCb data from 2017,18 will effectively double the existing dataset
 - Improved and additional LFU analyses
 - Updated angular observables

- CMS has collected a sample of 10¹⁰ B decays
 - With an effective low p_T electron reconstruction, should get a very competitive number of e.g. B⁺→K⁺e⁺e⁻ signal candidates
 - Expect systematics will be very different to those at LHCb e.g. no trigger effect and very different material distribution


ATLAS pursuing similar strategy


Belle2 data-taking starting in earnest

The future of direct searches

- A single rare decay measurement gives constraints on only the mass, coupling plane of any new physics
- In simple NP models, accumulation of constraints from multiple decay modes can break this degeneracy
- Could have implications for the case for a future accelerator

[PRD 97 (2018) 095035

Conclusions

- Intriguing anomalies seen in rare B decays
 - Branching fractions
 - Angular observables
 but debate about control of theory uncertainties
- Lepton universality tests give theoretically clean input
 - Latest measurements yet to provide a definitive picture
- Good prospects for resolution with new measurements
- Should anomalies persist, expect to see correlated effects in a number of decay modes