Overview on Models of Neutrino Masses and Flavour Mixing

Mu-Chun Chen, University of California at Irvine

31st Rencontres de Blois on "Particle Physics and Cosmology," Blois, France, June 6, 2019

[Photo credit: Astroparticle Physics - DESY]

Neutrinos as messengers

Talks (Tu) Luigi Antonio, Fusco, (Wed) Giulia Illuminati, Juliana Stachurska, Daniel García-Fernández

Earth

Tomography

Talks (Tu) Sergio Palomares-Ruiz

Where Do We Stand?

- Latest 3 neutrino global analysis:

	Normal Ordering (best fit)		Inverted Ordering $\left(\Delta \chi^{2}=9.3\right)$	
	$\mathrm{bfp} \pm 1 \sigma$	3σ range	$\mathrm{bfp} \pm 1 \sigma$	3σ range
$\sin ^{2} \theta_{12}$	$0.310_{-0.012}^{+0.013}$	$0.275 \rightarrow 0.350$	$0.310_{-0.012}^{+0.013}$	$0.275 \rightarrow 0.350$
$\theta_{12} /^{\circ}$	$33.82_{-0.76}^{+0.78}$	$31.61 \rightarrow 36.27$	$33.82_{-0.75}^{+0.78}$	$31.62 \rightarrow 36.27$
$\sin ^{2} \theta_{23}$	$0.582_{-0.019}^{+0.015}$	$0.428 \rightarrow 0.624$	$0.582_{-0.018}^{+0.015}$	$0.433 \rightarrow 0.623$
$\theta_{23} /^{\circ}$	$49.7_{-1.1}^{+0.9}$	$40.9 \rightarrow 52.2$	$49.7_{-1.0}^{+0.9}$	$41.2 \rightarrow 52.1$
$\sin ^{2} \theta_{13}$	$0.02240_{-0.00066}^{+0.00065}$	$0.02044 \rightarrow 0.02437$	$0.02263_{-0.00066}^{+0.00065}$	$0.02067 \rightarrow 0.02461$
$\theta_{13} /^{\circ}$	$8.61_{-0.13}^{+0.12}$	$8.22 \rightarrow 8.98$	$8.65_{-0.13}^{+0.12}$	$8.27 \rightarrow 9.03$
$\delta_{\mathrm{CP}} /^{\circ}$	217_{-28}^{+40}	$135 \rightarrow 366$	280_{-28}^{+25}	$196 \rightarrow 351$
$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$
$\frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.525_{-0.031}^{+0.033}$	$+2.431 \rightarrow+2.622$	$-2.512_{-0.031}^{+0.034}$	$-2.606 \rightarrow-2.413$

- hints of $\theta_{23} \neq \pi / 4$
- expectation of Dirac CP phase δ
- preference for normal hierarchy

Recent T2K result rs $\delta \simeq-\pi / 2$, consistent with global fit best fit value

Where Do We Stand?

- search for absolute mass scale:
- end point kinematic of tritium beta decays

$$
\begin{array}{lc}
m_{v_{e}}<2.2 \mathrm{eV}(95 \% \mathrm{CL}) \quad \text { Mainz } & \text { Tritium } \rightarrow H e^{3}+e^{-}+\bar{\nu}_{e} \\
m_{v_{\mu}}<170 \mathrm{keV} \\
m_{v_{\tau}}<15.5 \mathrm{MeV} & \text { KATRIN: increase sensitivity } \sim 0.2 \mathrm{eV} \\
\text { - neutrinoless double beta decay } & \begin{array}{l}
\text { Talks (Tu) by Ann-Kathrin Schütz, Guido } \\
\text { Fantini, Luca Gironi, Claudia Nones, } \\
\text { Justo Martin-Albo }
\end{array} \\
\hline
\end{array}
$$

current bound: $|\langle m\rangle| \equiv\left|\sum_{i=1,2,3} m_{i} U_{i e}^{2}\right|<(0.061-0.165) \mathrm{eV}$ (Kamland-Zen, 2016)

- Cosmology $\sum\left(m_{v_{i}}\right)<0.12 \mathrm{eV}$
Talks (Wed) Christian Reichardt
$N_{\text {eff }}=2.99 \pm 0.17$ [Planck 2018] \Rightarrow fully thermalized sterile neutrino disfavored
- EM properties of Neutrinos

```
Talks (Tu) Alexander Studenikin
```

- Astrophysical Neutrinos

Where Do We Stand?

- The known knowns:
normal hierarchy:

Open Questions - Neutrino Properties

Majorana vs Dirac?
CP violation in lepton sector?
Absolute mass scale of neutrinos?
Mass ordering: sign of $\left(\Delta m_{13}{ }^{2}\right)$?
Precision: $\theta_{23}>\pi / 4, \theta_{23}<\pi / 4, \theta_{23}=\pi / 4$?
Sterile neutrino(s)?
a suite of current and upcoming experiments to address these puzzles

Open Questions - Theoretical

Smallness of neutrino mass:

$$
m_{v} \ll m_{e, u, d}
$$

Flavor structure:

leptonic mixing

quark mixing

Open Questions - Theoretical

Smallness of neutrino mass:

$$
m_{v} \ll m_{e, u, d}
$$

Fermion mass and hierarchy
problem $" \rightarrow$ Many free parameters in the Yukawa sector of SM

Flavor structure:

leptonic mixing
quark mixing

Smallness of neutrino masses

What is the operator for neutrino mass generation?

- Majorana vs Dirac
- scale of the operator
- suppression mechanism

Neutrino Mass beyond the SM

- SM: effective low energy theory

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{\mathcal{O}_{5 D}}{M}+\frac{\mathcal{O}_{6 D}}{M^{2}}+\ldots \quad \text { new physics effects }
$$

- only one dim-5 operator: most sensitive to high scale physics

$$
\frac{\lambda_{i j}}{M} H H L_{i} L_{j} \quad \Rightarrow \quad m_{\nu}=\lambda_{i j} \frac{v^{2}}{M}
$$

Weinberg, 1979
$\cdot \mathrm{m}_{\mathrm{v}} \sim\left(\Delta \mathrm{m}^{2}{ }^{\mathrm{atm}}\right)^{1 / 2} \sim 0.1 \mathrm{eV}$ with $v \sim 100 \mathrm{GeV}, \lambda \sim \mathrm{O}(1) \Rightarrow \mathrm{M} \sim 10^{14} \mathrm{GeV}$

- Lepton number violation $\Delta \mathrm{L}=2 \hookrightarrow$ Majorana fermions

Neutrino Mass beyond the SM

Type-I seesaw

$N_{R}: S U(3)_{c} \times S U(2)_{w} \times U(1)_{Y} \sim(1,1,0)$
Minkowski, 1977; Yanagida, 1979; Glashow, 1979; Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979;

3 possible portals

Type-III seesaw

$$
\Sigma=\left(\Sigma^{+}, \Sigma^{0}, \Sigma^{-}\right)
$$

$\Sigma_{R}: S U(3)_{c} \times S U(2)_{w} \times U(1) Y \sim(1,3,0)$
Foot, Lew, He, Joshi, 1989; Ma, 1998

Why are neutrinos light? (Type-I) Seesaw Mechanism

- Adding the right-handed neutrinos:

$$
\begin{gathered}
\left(\begin{array}{ll}
v_{L} & v_{R}
\end{array}\right)\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right)\binom{v_{L}}{v_{R}} \\
m_{v} \sim m_{\text {light }} \sim \frac{m_{D}^{2}}{M_{R}} \ll m_{D} \\
m_{\text {heavy }} \sim M_{R}
\end{gathered}
$$

$$
\text { For } m_{v_{3}} \sim \sqrt{\Delta m_{a t m}^{2}}
$$

If $\quad m_{D} \sim m_{t} \sim 180 \mathrm{GeV}$

Grand Unification Naturally Accommodates Seesaw

Low Scale Seesaws

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{v}} \sim\left(\Delta \mathrm{~m}^{2} \mathrm{~atm}\right)^{1 / 2} \sim 0.1 \mathrm{eV} \text { with } v \sim 100 \mathrm{GeV}, \lambda \sim 10^{-6} \\
& \Rightarrow \mathrm{M} \sim 10^{2} \mathrm{GeV}
\end{aligned}
$$

- New particles:
- Type I seesaw: generally decouple from collider experiments
- Type II seesaw: $\Delta^{++} \rightarrow e^{+} \epsilon^{+}, \mu^{+} \mu^{+}, \tau^{+} \tau^{+}$
- Type III seesaw: observable displaced vertex, dark matter candidate
- inverse seesaw: non-unitarity effects
- radiative mass generation: model dependent - singly/doubly charged SU(2) singlet, even colored scalars in loops, dark matter candidate
- New interactions:
- LR symmetric model: W_{R}
- R parity violation: $\tan ^{2} \theta_{\mathrm{atm}} \simeq \frac{B R\left(\tilde{\chi}_{1}^{0} \rightarrow \mu^{ \pm} W^{\mp}\right)}{B R\left(\tilde{\chi}_{1}^{0} \rightarrow \tau^{ \pm} W^{\mp}\right)}$
-

Cautions!!! Is it really the V_{R} in Type I seesaw?

Expanded view of the region:
$40 \mathrm{GeV}<\mathrm{m}_{\mathrm{N}}<250 \mathrm{GeV}$

RH neutrino production thru active-sterile mixing:

$$
\propto V=\frac{m_{D}}{M_{R}} \sim \frac{10^{-4} \mathrm{GeV}}{100 \mathrm{GeV}}=10^{-6}
$$

RH neutrino relevant for v mass generation

$$
\Rightarrow\left|V_{\mu N}\right|^{2}=10^{-12}
$$

unless extremely fine-tuned

What if neutrinos
 are Dirac?

Dirac Neutrinos and SUSY Breaking

- naturally small Dirac neutrino masses?
- before SUSY breaking: absence of Dirac neutrino masses (as well as Weinberg operator)
- after SUSY breaking: realistic effective Dirac neutrino masses generated

$$
Y_{\nu} \sim \frac{m_{3 / 2}}{M_{\mathrm{P}}} \sim \frac{\mu}{M_{\mathrm{P}}}
$$

Arkani-Hamed, Hall, Murayama, Tucker-Smith, Weiner (200I)

- similar to the Giudice-Masiero Mechanism for the mu problem

$$
\mu \sim\langle\mathscr{W}\rangle / M_{\mathrm{P}}^{2} \sim m_{3 / 2}
$$

Giudice, Masiero (1988)

- need a symmetry reason for the absence of these operators before SUSY breaking

Dirac Neutrinos and SUSY Breaking

- Symmetry realization in MSSM: discrete R symmetries, \mathbb{Z}_{M}^{R}
M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)
- Dirac neutrinos, with naturally small masses
- $\Delta L=2$ operators forbidden to all orders \Rightarrow no neutrinoless double beta decay
- New signature: lepton number violation $\Delta L=4$ operators, $\left(v_{R}\right)^{4}$, allowed \Rightarrow new LNV processes, e.g. M.-C. C., M. Ratz, C. Staudt, P. Vaudrevange (2012)
- neutrinoless quadruple beta decay

Heeck, Rodejohann (2013)

- mu term is naturally small

- dangerous proton decay operators forbidden/suppressed
- can also give dynamical generation of RPV operators with size predicted
M.-C. C., M. Ratz, V. Takhistov (2015)

Quadruple (!) beta decay — 0v4b

$\Delta L=4 B S M$ physics with Dirac neutrinos

Only possible with full topological reconstruction of all electrons

90% CL limit	Symmetric	Uniform	Semi- symmetric	Anti- symmetric
Observed	$3.2 \times 10^{21} \mathrm{y}$	$2.6 \times 10^{21} \mathrm{y}$	$1.7 \times 10^{21} \mathrm{y}$	$1.1 \times 10^{21} \mathrm{y}$
Sensitivity	$3.7 \times 10^{21} \mathrm{y}$	$3.0 \times 10^{21} \mathrm{y}$	$2.0 \times 10^{21} \mathrm{y}$	$1.3 \times 10^{21} \mathrm{y}$

(combined limits for 3 topologies) Preliminary

NEMO-3 (2017):
$\mathrm{T}_{1 / 2}>(1.1-3.2) \times 10^{21} \mathrm{yrs}$

Theory expectation:

Heeck, Rodejohann (2013)

$$
\frac{\tau_{1 / 2}^{0 \nu 4 \beta}}{\tau_{1 / 2}^{2 \nu 2 \beta}} \simeq\left(\frac{Q_{0 \nu 2 \beta}}{Q_{0 \nu 4 \beta}}\right)^{11}\left(\frac{\Lambda^{4}}{q^{12} G_{F}^{4}}\right) \simeq 10^{46}\left(\frac{\Lambda}{\mathrm{TeV}}\right)^{4}
$$

Anarchy

- there are no parametrically small numbers
- large mixing angle, near mass degeneracy statistically preferred
de Gouvea, Murayama (2012)

- UV theory prediction can resemble anarchy
- warped extra dimensions
- heterotic string theory

Expectations from Heterotic String Theories

- heterotic string models: $\mathrm{O}(100) \mathrm{RH}$ neutrinos

Buchmüller, Hamaguchi, Lebedev, Ramos-Sánchez, Ratz (2007)

- statistical expectations with large N (= \# of RH neutrinos)

Feldstein, Klemm (2012)

Symmetry Relations

Grand Unified Theories: GUT symmetry

Quarks - Leptons

Family Symmetry:
e-family \oplus muon-family \oplus tau-family

Symmetry Relations

Symmetry \Rightarrow relations among parameters
 \Rightarrow reduction in number of fundamental parameters

Symmetry Relations

Symmetry \Rightarrow relations among parameters
 \Rightarrow reduction in number of fundamental parameters

Symmetry \Rightarrow experimentally testable correlations among physical observables

Symmetry Relations

Symmetry \Rightarrow experimentally testable correlations among physical observables

CP phase

mass hierarchy

cLFV
mixing angles

Testing correlations \Rightarrow Precision

Origin of Flavor Mixing and Mass Hierarchies

- several models have been constructed based on
- GUT Symmetry [SU(5), SO(10)] \oplus Family Symmetry G_{F}
- models based on discrete family symmetry groups have been constructed
- A_{4} (tetrahedron)
- T^{\prime} (double tetrahedron)
- S_{3} (equilateral triangle)
- S_{4} (octahedron, cube)
- A_{5} (icosahedron, dodecahedron)
- Δ_{27}
- Q6
- Extra dimensional origin
- Modular symmetry

Tri-bimaximal Neutrino Mixing

- Latest Global Fit (3 σ) $\quad \sin ^{2} \theta_{23}=0.437(0.374-0.626) \quad\left[\theta^{\mathrm{lep}}{ }_{23} \sim 49.7^{\circ}\right] \quad \begin{gathered}\text { Esteanandez-Cabezudo, Maltoni, } \\ \text { Schwetz, }\end{gathered}$

$$
\begin{array}{cl}
\sin ^{2} \theta_{12}=0.308(0.259-0.359) & {\left[\theta^{\mathrm{ep}} \operatorname{c}_{12} \sim 33.8^{\circ}\right]} \\
\sin ^{2} \theta_{13}=0.0234(0.0176-0.0295) & {\left[\theta^{\mathrm{lep}}{ }_{13} \sim 8.61^{\circ}\right]}
\end{array}
$$

- Tri-bimaximal Mixing Pattern

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \quad \begin{array}{ll}
\sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 & \sin ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 3 \\
\sin \theta_{13, \mathrm{TBM}}=0 .
\end{array}
$$

- Leading Order: TBM (from symmetry) + higher order corrections/contributions
- More importantly, corrections to the kinetic terms Leurer, Nir, Seiberg ('93); Dudas, Pokorski, Savoy ('95)
- small for quarks
- sizable in discrete symmetry models for leptons м.-С.C, м. Fallbacher, M. Ratz, C. Staudt (2012)

Example: Tetrahedral Group A_{4}

- Smallest group giving rise to tri-bimaximal neutrino mixing: tetrahedral group A_{4}

$$
\mathrm{T}:(1234) \rightarrow(2314)
$$

$$
\text { S: }(1234) \rightarrow(4321)
$$

Neutrino Mass Matrix from A4

$$
M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right) \begin{gathered}
2 \text { free parameters } \\
\text { relative strengths } \\
\Rightarrow \text { CG's }
\end{gathered}
$$

- always diagonalized by TBM matrix, independent of the two free parameters

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

- 2 independent parameters for 3 masses $\Rightarrow 1$ relation

General Structure

Example: $\operatorname{SU(5)~Compatibility~} \Rightarrow T^{\prime}$ Family Symmetry

- Double Tetrahedral Group T': double covering of A4
M.-C.C, K.T. Mahanthappa $(2007,2009)$
- Symmetries $\Rightarrow 10$ parameters in Yukawa sector $\Rightarrow 22$ physical observables
- Symmetries \Rightarrow correlations among quark and lepton mixing parameters

$$
\theta_{13} \simeq \theta_{c} / 3 \sqrt{2} \leftarrow \begin{gathered}
c G^{\prime} \text { of } \\
\mathrm{sU}(5) \& T^{\circ}
\end{gathered}
$$

no free parameters!

Neutrinoless Double Beta Decay


```
our model prediction
```

sum rule among masses \Rightarrow small predicted region

Symmetry Relations

Quark Mixing			Lepton Mixing		
mixing parameters	best fit	3σ range	mixing parameters	best fit	30 range
$\theta^{a}{ }_{23}$	$2.36{ }^{\circ}$	2.250-2.480	$\theta^{\mathrm{e}}{ }_{23}$	$49.7{ }^{\circ}$	40.90-52.20
$\theta^{a}{ }_{12}$	$12.88{ }^{\circ}$	12.750-13.010	$\theta^{e}{ }_{12}$	$33.82{ }^{\circ}$	$31.610-36.20^{\circ}$
$\theta^{a}{ }_{13}$	$0.21{ }^{\circ}$	0.170-0.25 ${ }^{\circ}$	$\theta^{e}{ }_{13}$	$8.61{ }^{\circ}$	$8.22^{\circ}-8.98^{\circ}$

- QLC-I $\theta_{\mathrm{c}}+\theta_{\text {sol }} \cong 45^{\circ}$

Raidal, ‘04; Smirnov, Minakata, ‘04
(BM)

- QLC-II $\tan ^{2} \theta_{\text {sol }} \cong \tan ^{2} \theta_{\text {sol }, \text { TBM }}+\left(\theta_{\mathrm{c}} / 2\right){ }^{*} \cos \delta_{e}$

Ferrandis, Pakvasa; Dutta, Mimura; M.-C.C., Mahanthappa (TBM) $\theta^{e}{ }_{13} \cong \theta_{c} / 3 \sqrt{ } 2$ Too small

- testing symmetry relations: a more robust way to distinguish different classes of models measuring leptonic mixing parameters to the
precision of those in quark sector precision of those in quark sector

"Large" Deviations from TBM in A_{4}

M.-C.C, J. Huang, J. O’Bryan,A.Wijangco, F. Yu, (20I2)

- Different A4 breaking patterns:

inverted
non-maximal $\theta_{23} \leftrightharpoons$ normal hierarchy
mass ordering \leftrightarrows symmetry breaking patterns

Another Example: A_{5}

- Correlations among different mixing parameters

G_{e}	θ_{12}	θ_{23}	$\mid \sin \alpha_{j i}$	δ
\mathbb{Z}_{3}	$35.27^{\circ}+10.13^{\circ} r^{2}$	45°	0	90°
				270°
\mathbb{Z}_{5}	$31.72^{\circ}+8.85^{\circ} r^{2}$	$45^{\circ} \pm 25.04^{\circ} r$	0	0°
				180°
		45°	0	90°
				270°
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$36.00^{\circ}-34.78^{\circ} r^{2}$	$31.72^{\circ}+55.76^{\circ} r$	0	0°
				180°
		$58.28^{\circ}-55.76^{\circ} r$	0	0°
				$\overline{180^{\circ}}$

TABLE I. Numerical predictions for the correlations found in this paper. The dimensionless parameter $r \equiv \sqrt{2} \sin \theta_{13}$ is constrained by global data to lie in the interval $0.19 \lesssim r \lesssim$ 0.22 at 3σ. The predictions for θ_{12} and θ_{23} shown here ne-

CP Violation

CP Violation in Neutrino Oscillation

- With leptonic Dirac CP phase $\delta \neq 0 \rightarrow$ leptonic CP violation
- Predict different transition probabilities for neutrinos and antineutrinos

$$
P\left(v_{a} \rightarrow v_{\beta}\right) \neq P\left(\overline{v_{a}} \rightarrow \overline{v_{\beta}}\right)
$$

- One of the major scientific goals at current and planned neutrino experiments

DUNE/LBNF

Origin of CP Violation

- CP violation \Leftrightarrow complex mass matrices
$\bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{Q}_{L, j}\left(M_{u}^{\dagger}\right)_{j i} U_{R, i} \xrightarrow{\text { ©P }} \bar{Q}_{L, j}\left(M_{u}\right)_{i j} U_{R, i}+\bar{U}_{R, i}\left(M_{u}\right)_{i j}^{*} Q_{L, j}$
- Conventionally, CPV arises in two ways:
- Explicit CP violation: complex Yukawa coupling constants Y
- Spontaneous CP violation: complex scalar VEVs <h>

- Complex CG coefficients in certain discrete groups \Rightarrow explicit CP violation
- CPV in quark and lepton sectors purely from complex CG coefficients M.-C.C., K.T. Mahanthappa, Phys. Lett. B681, 444 (2009)

CG coefficients in non-Abelian discrete symmetries \Rightarrow relative strengths and phases in entries of Yukawa matrices \Rightarrow mixing angles and phases (and mass hierarchy)

Group Theoretical Origin of CP Violation

Basic idea | Discrete |
| :---: |
| symmetry G |

$$
M=\left(\begin{array}{ll}
\mathrm{C}_{11^{2}} & \mathrm{C}_{21^{1}} \\
\mathrm{C}_{12^{1}} & \mathrm{C}_{22^{3}}
\end{array}\right) Y\langle\Delta\rangle \underset{\overparen{J}}{\widehat{J}}
$$

CP Transformation

- Canonical CP transformation

$$
\begin{aligned}
& \phi(x) \stackrel{C \mathcal{P}}{\longmapsto} \eta_{C_{\mathcal{P}}} \phi^{*}(\mathcal{P} x) \\
& \quad \text { freedom of re-phasing fields }
\end{aligned}
$$

- Generalized CP transformation

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987); Grimus, Rebelo (1995)

Group Theoretical Origin of CP Violation

complex CGs $\boldsymbol{i} \boldsymbol{\gamma}$ G and physical CP transformations do not commute

$$
\begin{aligned}
& \Phi(x) \stackrel{\widetilde{C P}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x) \\
& \rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i \\
& \begin{array}{l}
\text { u has to be a class-inverting, } \\
\quad \text { involutory automorphism of } \mathrm{G} \\
\Rightarrow \text { non-existence of such automorphism } \\
\text { in certain groups }
\end{array} \\
& \Rightarrow \text { calculable physical CP violation in } \\
& \quad \text { generic setting }
\end{aligned}
$$

examples: $\mathrm{T}_{7}, \Delta(27), \ldots .$.

Novel Origin of CP (Time Reversal) Violation

complex CGs \lrcorner CP symmetry cannot be defined for certain groups

CP Violation from Group Theory!

Sterile Neutrinos

- All previous discussions applicable to sterile neutrinos also
- Tension with standard cosmology: sterile neutrinos as test of standard cosmology
- Tension with non-unitarity
- Reversed spectrum for neutrino less double beta decay

MaVaNs

- Exotic scalar field A (acceleron) with logarithmic, temperature-dependent potential
- Dark Energy density: $\wedge^{4} \sim\left(10^{-2.5} \mathrm{eV}\right)^{4} \sim\left(\Delta \mathrm{~m}^{2}\right)^{2}$
- A-dependent "heavy" Majorana neutrino masses

$$
\begin{aligned}
& m_{N}(A)=m_{0}+\kappa A \\
& m_{\nu}(A)=m_{D}^{2} /\left(m_{0}+\kappa A\right)
\end{aligned}
$$

$$
\mathrm{T}>0.1 \mathrm{eV}: \mathrm{A} \propto \mathrm{~T}
$$

$$
\mathrm{T}<0.1 \mathrm{eV}: \mathrm{A} \rightarrow 0
$$

- Active-Sterile mixing ~ $\left(\mathrm{m}_{\text {active }} / \mathrm{M}_{\text {sterile }}\right)^{1 / 2}$

MaVaNs

Terrestrial Experiments: sizable active-sterile mixing

Early Universe ($\mathrm{T}>0.1 \mathrm{eV}$): small active-sterile mixing

Consistent with Cosmology; Bonus: DE

Neutrinoless Double Beta Decay

$$
\left|m_{\beta \beta}\right|=\left|\sum_{k=1}^{4} U_{e k}^{2} m_{k}\right|
$$

(a)

(b)

Cosmological Connections

Standard Leptogenesis

- RH heavy neutrino decay:
- quantum interference of tree-level \& one-loop diagrams \Rightarrow primordial lepton number asymmetry $\Delta \mathrm{L}$

leptons
antileptons

$$
\epsilon_{1}=\frac{\sum_{\alpha}\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)-\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right]}{\sum_{\alpha}\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)+\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right]}
$$

Leptonic CP violation $\Rightarrow \Delta \mathrm{L} \propto\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)-\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right] \neq 0$

Dirac Leptogenesis

- Leptogenesis possible even when neutrinos are Dirac particles (no $\Delta \mathrm{L}=2$ violation)
- Characteristics of Sphaleron effects:
- only left-handed fields couple to sphalerons
- sphalerons change $(B+L)$ but not $(B-L)$
- sphaleron effects in equilibrium for $\mathrm{T}>$ Tew
late time LR equilibration of neutrinos making Dirac leptogenesis possible with primordial $\Delta L=0$

Baryogenesis through Flavon Decay

- Radiation dominates: LR equilibration for electrons @ T~10 GeV
- Froggatt-Nielsen Models for flavor structure and mass hierarchy \Rightarrow Flavon
- Asymmetry due to flavon decay $(\Delta L=0)$

$$
S \rightarrow \bar{\ell}_{\mathrm{L}}+\phi+e_{\mathrm{R}} \quad S^{*} \rightarrow \ell_{\mathrm{L}}+\phi^{*}+\bar{e}_{\mathrm{R}}
$$

- Flavon dominates: Hubble increases so that RH electrons do not equilibrate before EWPT

Outlook

Summary

- Fundamental origin of fermion mass hierarchy and flavor mixing still not known
- Neutrino masses: evidence of physics beyond the SM
- Symmetries:
- can provide an understanding of the pattern of fermion masses and mixing
- Grand unified symmetry + discrete family symmetry \Rightarrow predictive power
- Symmetries \Rightarrow Correlations, Correlations, Correlations!!!
- Dirac vs Majorana? - should remain open minded!
- naturally light Dirac neutrinos from discrete R-symmetry
- suppressed nucleon decays and naturally small mu term

Summary

- Discrete Groups (of Type I) affords a Novel origin of CP violation:
- Complex CGs \Rightarrow Group Theoretical Origin of CP Violation
- NOT all outer automorphisms correspond to physical CP transformations
- Condition on automorphism for physical CP transformation

$$
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i
$$

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

class inverting, involutory automorphisms

physical CP transformations

Discussions

1. question 1
2. question 2
3. question 3

Backup Slides

Group Theoretical Origin of CP Violation: a toy model

Novel Origin of CP (Time Reversal) Violation

- more generally, for discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow physical CP violation

Examples

> M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Type I: all odd order non-Abelian groups

group	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	T_{7}	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$
SG	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$

- Type IIA: dihedral and all Abelian groups

group	S_{3}	Q_{8}	A_{4}	$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}$	$\mathrm{~T}^{\prime}$	S_{4}	A_{5}
SG	$(6,1)$	$(8,4)$	$(12,3)$	$(24,1)$	$(24,3)$	$(24,12)$	$(60,5)$

- Type IIB

Example for a type I group:

$\Delta(27)$

- decay asymmetry in a toy model

- prediction of CP violating phase from group theory

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Field content

fermions								
field	S	X	Y	Ψ	Σ			
$\Delta(27)$	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{3}$	$\mathbf{3}$			
$\mathrm{U}(1)$	$q_{\Psi}-q_{\Sigma}$	$q_{\Psi}-q_{\Sigma}$	0	q_{Ψ}	q_{Σ}			

- Interactions

$$
q_{\Psi}-q_{\Sigma} \neq 0
$$

$$
\mathscr{L}_{\text {toy }}=F^{i j} S \bar{\Psi}_{i} \Sigma_{j}+G^{i j} X \bar{\Psi}_{i} \Sigma_{j}+H_{\Psi}^{i j} Y \bar{\Psi}_{i} \Psi_{j}+H_{\Sigma}^{i j} Y \bar{\Sigma}_{i} \Sigma_{j}+\text { h.c. }
$$

arbitrary coupling constants:
$\mathrm{f}, \mathrm{g}, \mathrm{h} \psi, \mathrm{h}_{\Sigma}$

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Particle decay $Y \rightarrow \bar{\Psi} \Psi$
interference of

with

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\begin{aligned}
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi} & =\frac{\Gamma(Y \rightarrow \bar{\Psi} \Psi)-\Gamma\left(Y^{*} \rightarrow \bar{\Psi} \Psi\right)}{\Gamma(Y \rightarrow \bar{\Psi} \Psi)+\Gamma\left(Y^{*} \rightarrow \bar{\Psi} \Psi\right)} \\
& \propto \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[\operatorname{tr}\left(F^{\dagger} H_{\Psi} F H_{\Sigma}^{\dagger}\right)\right]+\operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\operatorname{tr}\left(G^{\dagger} H_{\Psi} G H_{\Sigma}^{\dagger}\right)\right] \\
& =|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right] . \\
& \text { one-loop integral } I_{S}=I\left(M_{S}, M_{Y}\right)
\end{aligned}
$$

- properties of ε
- invariant under rephasing of fields
- independent of phases of f and g
- basis independent

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi}=|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right]
$$

- cancellation requires delicate adjustment of relative phase $\varphi:=\arg \left(h_{\Psi} h_{\Sigma}^{*}\right)$
- for non-degenerate M_{S} and $M_{X}{ }^{*} . \quad \operatorname{Im}\left[I_{S}\right] \neq \operatorname{Im}\left[I_{X}\right]$
- phase φ unstable under quantum corrections
- for $\operatorname{Im}\left[I_{S}\right]=\operatorname{Im}\left[I_{X}\right] \&|f|=|g|$
- phase φ stable under quantum corrections
- relations cannot be ensured by an outer automorphism (i.e. GCP) of $\Delta(27)$
- require symmetry larger than $\Delta(27)$

model based on $\Delta(27)$ violates CP!

Spontaneous CP Violation with Calculable CP Phase

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

field	X	Y	Z	Ψ	Σ	ϕ
$\Delta(27)$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{1}_{8}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$
$U(1)$	$2 q_{\Psi}$	0	$2 q_{\Psi}$	q_{Ψ}	$-q_{\Psi}$	0

$\Delta(27) \subset S G(54,5): \begin{cases}(X, Z) & : \text { doublet } \\ \left(\Psi, \Sigma^{\mathcal{C}}\right) & : \text { hexaplet } \\ \phi & : \text { non-trivial 1-dim. representation }\end{cases}$
non-trivial $\langle\phi\rangle$ breaks $\operatorname{SG}(54,5) \rightarrow \Delta(27)$

$$
\text { Type IIA } \rightarrow \text { Type I }
$$

allowed coupling leads to mass splitting $\mathscr{L}_{\text {toy }}^{\phi} \supset M^{2}\left(|X|^{2}+|Z|^{2}\right)+\left[\frac{\mu}{\sqrt{2}}\langle\phi\rangle\left(|X|^{2}-|Z|^{2}\right)+\right.$ h.c. $]$
\Rightarrow CP asymmetry with calculable phases

Group theoretical origin of CP violation!

CP Transformation

- Canonical CP transformation

- Generalized CP transformation

Generalized CP Transformation

setting w/ discrete symmetry G

G and CP transformations do not commute

n習 generalized CP transformation Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)
invariant contraction/coupling in A_{4} or T^{\prime}

$$
\left[\phi_{\mathbf{1}_{2}} \otimes\left(x_{\mathbf{3}} \otimes y_{\mathbf{3}}\right)_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi\left(x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right)
$$

canonical CP transformation maps $A_{4} / \mathrm{T}^{\prime}$ invariant contraction to something non-invariant
\Leftrightarrow need generalized CP transformation $\widetilde{C P}: \phi \stackrel{\widetilde{C P}}{\longmapsto} \phi^{*}$ as usual but

The Bickerstaff-Damhus automorphism (BDA)

- Bickerstaff-Damhus automorphism (BDA) u

$$
\begin{gather*}
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i \\
\text { unitary \& symmetric }
\end{gather*}
$$

- BDA vs. Clebsch-Gordan (CG) coefficients

Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:

$$
\begin{aligned}
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right):=\frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}\left(g^{2}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left[\rho_{\boldsymbol{r}_{i}}(g)^{2}\right] \\
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1, & \text { if } \boldsymbol{r}_{i} \text { is a real representation, } \\
0, & \text { if } \boldsymbol{r}_{i} \text { is a complex representation, } \\
-1, & \text { if } \boldsymbol{r}_{i} \text { is a pseudo-real representation. }\end{cases}
\end{aligned}
$$

- Twisted Frobenius-Schur indicator

Bickerstaff, Damhus (1985); Kawanaka, Matsuyama (1990)

$$
\begin{aligned}
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right) & =\frac{1}{|G|} \sum_{g \in G}\left[\rho_{\boldsymbol{r}_{i}}(g)\right]_{\alpha \beta}\left[\rho_{\boldsymbol{r}_{i}}(u(g))\right]_{\beta \alpha} \\
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right) & = \begin{cases}+1 \forall i, & \text { if } u \text { is a BDA, } \\
+1 \text { or }-1 \quad \forall i, & \text { if } u \text { is class-inverting and involutory, } \\
\text { different from } \pm 1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Three Types of Finite Groups

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Low Scale Seesaw Scenarios

- New particles:
- Type I seesaw: generally decouple from collider experiments
- Type II seesaw: $\Delta^{++} \rightarrow e^{+} e^{+}, \mu^{+} \mu^{+}, \tau^{+} \tau^{+}$
- Type III seesaw: observable displaced vertex Franceschino, Hambye, Strumia,2008
- Inverse seesaw: non-unitarity effects
- Radiative mass generation: model dependent - singly/doubly charged SU(2) singlet, even colored scalars in loops
- New interactions:
- LR symmetric model: W_{R}
- R parity violation: $\tan ^{2} \theta_{\mathrm{atm}} \simeq \frac{B R\left(\tilde{\chi}_{1}^{0} \rightarrow \mu^{ \pm} W^{\mp}\right)}{B R\left(\tilde{\chi}_{1}^{0} \rightarrow \tau^{ \pm} W^{\mp}\right)} \quad$ Mukhopadhyaya, Roy, Vissani, 1998

TeV Scale Seesaw Models

- With new particles:
- type-l seesaw
- generally decouple from collider physics

- type-II seesaw
- TeV scale doubly charged Higgs \Leftrightarrow small couplings
- unique signatures:

$$
\Delta^{++} \rightarrow e^{+} e^{+}, \mu^{+} \mu^{+}, \tau^{+} \tau^{+}
$$

- decay $B R \leftrightarrow$ mass ordering

[^0]Han, Mukhopadhyaya, Si, Wang, ‘07; Akeroyd, Aoki, Sugiyama, '08; ...

TeV Scale Seesaw Models

- With new particles:
- type-III seesaw

Foot, Lew, He, Joshi, 1989; Ma, 1998

- TeV scale triplet decay : observable displaced vertex

$$
\tau \leq 1 \mathrm{~mm} \times\left(\frac{0.05 \mathrm{eV}}{\sum_{i} m_{i}}\right)\left(\frac{100 \mathrm{GeV}}{\Lambda}\right)^{2} \quad \text { Franceschino, Hambye, Strumia,2008 }
$$

- neutral component Σ^{0} can be dark matter candidate
- Radiative Seesaw
- Zee-Babu model (neutrino mass at 2 loop)
- singly+doubly charged SU(2) singlet scalars
- neutrino mass at higher loops: TeV scale RH neutrinos
- loop particles can also have color charges
- enhanced production cross section

TeV Scale Seesaw Models

- With new interactions:
- SUSY LR Model:

Azuleos et al 06; del Aguila et al 07, Han et al 07; Chao, Luo, Xing, Zhou, ‘08; ...

- tested via searches for W_{R}
- More Naturally: inverse seesaw or higher dimensional operators or Extra Dim
- inverse seesaw
- non-unitarity effects
- enhanced LFV (both SUSY and non-SUSY cases)
- correlation

Hirsch, Kernreiter, Romao, del Moral, 2010

$$
\frac{\mathrm{BR}\left(\tilde{\chi}_{1}^{ \pm} \rightarrow \tilde{N}_{1+2}+\mu^{ \pm}\right)}{\operatorname{BR}\left(\tilde{\chi}_{1}^{ \pm} \rightarrow \tilde{N}_{1+2}+\tau^{ \pm}\right)} \propto \frac{\mathrm{BR}(\mu \rightarrow e+\gamma)}{\operatorname{BR}(\tau \rightarrow e+\gamma)}
$$

A Novel Origin of CP Violation

- more generally, for discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow physical CP violation

CP Violation from Group Theory!

[^0]: Perez, Han, Huang, Li, Wang, ‘08;

