Progress on SM Higgs precision calculations

Robert Harlander RWTH Aachen University

31st Rencontres de Blois June 2019

supported by

Deutsche Forschungsgemeinschaft **DFG**

Bundesministerium für Bildung und Forschung

"Of course, [this] model has too many arbitrary features to be taken seriously." S. Weinberg '67

"Of course, [this] model has too many arbitrary features to be taken seriously."

S. Weinberg '67

"Of course, [this] model has too many arbitrary features to be taken seriously." S. Weinberg '67

- parity violation
- gauge structure
- hypercharges
- number of generations
- Higgs representation
- $y_t=1$ vs. $y_b = 0.02$ vs. $y_\mu = 0.0006$
- CKM hierarchy
- is naturalness a thing?

"Of course, [this] model has too many arbitrary features to be taken seriously." S. Weinberg '67

- parity violation
- gauge structure
- hypercharges
- number of generations
- Higgs representation
- $y_t=1$ vs. $y_b = 0.02$ vs. $y_\mu = 0.0006$
- CKM hierarchy
- is naturalness a thing?
- ... and it's incomplete, of course...

$$\sqrt{\hat{s}} = M_H$$

Heavy-top limit

\sqrt{s}	σ	δ (theory)	$\delta(\text{PDF})$	$\delta(lpha_s)$
13 TeV	48.61 pb	$^{+2.08\text{pb}}_{-3.15\text{pb}} \begin{pmatrix} +4.27\%\\ -6.49\% \end{pmatrix}$	± 0.89 pb ($\pm 1.85\%$)	$^{+1.24\text{pb}}_{-1.26\text{pb}} \begin{pmatrix} +2.59\%\\ -2.62\% \end{pmatrix}$
14 TeV	54.72 pb	$^{+2.35pb}_{-3.54pb}$ $\begin{pmatrix} +4.28\%\\ -6.46\% \end{pmatrix}$	$\pm 1.00 \mathrm{pb} (\pm 1.85\%)$	$^{+1.40\text{pb}}_{-1.41\text{pb}} \left(^{+2.60\%}_{-2.62\%}\right)$
27 TeV	146.65 pb	$+6.65 \text{pb} +4.53\% \\ -9.44 \text{pb} -6.43\%$	± 2.81 pb ($\pm 1.95\%$)	$+3.88 \text{pb} +2.69\% \\ -3.82 \text{pb} (-2.64\%)$

QCD/EW: complete factorization Anastasiou, Boughezal, Petriello '09

Checked by explicit calculations: Bonetti, Melnikov, Tancredi '17 Anastasiou *et al.* '18

> Particle Physics and Cosmology

Distributions

Dulat, Mistlberger, Pelloni 2018

Cieri, Chen, T. Gehrmann, Glover, Huss 2018

NNLO pt

NNLO pt

$$\sqrt{\hat{s}} = M_H$$

$$\sqrt{\hat{s}} = M_H$$

$$\sqrt{\hat{s}} \sim p_T + M_H$$
$$m_t \to \infty?$$

 $\sqrt{\hat{s}} = M_H$

$$\sqrt{\hat{s}} \sim p_T + M_H$$
$$m_t \to \infty?$$

Small-p_T resummation

NNLO⊕N³LL

Bizoń, Monni, Re, Rottoli, Torielli 2017

 $\sqrt{\hat{s}} = M_H$

$$\sqrt{\hat{s}} \sim p_T + M_H$$
$$m_t \to \infty?$$

1/m_t expansion

Large p_T

Lindert, Kudashkin, Melnikov, Wever 2018 exact mt dependence: S.P. Jones, Kerner, Luisoni 2018

NLO HH with top mass

eee T

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke '16 Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '18

Box-triangle interference

Box-triangle interference

WH/ZH production

WH/ZH production

gg→ZH NLO heavy top

Altenkamp, Dittmaier, RH, Rzehak, Zirke 2013 Hasselhuhn, Luthe, Steinhauser 2016

\sqrt{s}	σ	δ (theory)	$\delta(\text{PDF})$	$\delta(lpha_s)$
13 TeV	48.61 pb	$^{+2.08\text{pb}}_{-3.15\text{pb}} \begin{pmatrix} +4.27\%\\ -6.49\% \end{pmatrix}$	\pm 0.89 pb (\pm 1.85%)	$^{+1.24\text{pb}}_{-1.26\text{pb}} \begin{pmatrix} +2.59\%\\ -2.62\% \end{pmatrix}$
14 TeV	54.72 pb	$^{+2.35pb}_{-3.54pb}$ $\begin{pmatrix} +4.28\%\\ -6.46\% \end{pmatrix}$	$\pm 1.00\mathrm{pb}(\pm 1.85\%)$	$^{+1.40\text{pb}}_{-1.41\text{pb}} \begin{pmatrix} +2.60\%\\ -2.62\% \end{pmatrix}$
27 TeV	146.65 pb	+6.65 pb +4.53% -9.44 pb -6.43%	± 2.81 pb ($\pm 1.95\%$)	$+3.88 \text{pb} +2.69\% \\ -3.82 \text{pb} (-2.64\%)$

\sqrt{s}	σ	δ (theory)	$\delta(\text{PDF})$	$\delta(lpha_s)$
13 TeV	48.61 pb	$^{+2.08\text{pb}}_{-3.15\text{pb}} \begin{pmatrix} +4.27\%\\ -6.49\% \end{pmatrix}$	± 0.89 pb ($\pm 1.85\%$)	$^{+1.24\text{pb}}_{-1.26\text{pb}} \begin{pmatrix} +2.59\%\\ -2.62\% \end{pmatrix}$
14 TeV	54.72 pb	+2.35 pb $(+4.28%)-3.54 pb$ $(-6.46%)$	$\pm 1.00 \mathrm{pb} (\pm 1.85\%)$	+1.40 pb $(+2.60%)$ $-1.41 pb$ $(-2.62%)$
27 TeV	146.65 pb	+6.65 pb +4.53% -9.44 pb -6.43%	$\pm 2.81 { m pb} (\pm 1.95\%)$	$+3.88 \text{pb} +2.69\% \\ -3.82 \text{pb} (-2.64\%)$

No "heavy-bottom limit" Only NLO result!

```
LO: -10%
NLO: -1%
```


Bottom quark effects

No "heavy-bottom limit" Only NLO result!

LO: -10% NLO: -1%

Interference with top: m_b, m_t, M_H, p_T

renormalization scale? resummation scale?

resummation of large logs Melnikov, Penin 2016 NLO pt top-bottom interference Lindert, Melnikov, Tancredi, Wever 2017

→Napoletano

What made all of this possible...

Integration-by-Parts Laporta algorithm Canonical basis Sector decomposition NNLO subtraction

Chetyrkin, Tkachov 1981

Laporta 2000

Henn 2013

n Binoth, Heinrich 2000

Catani, Grazzini 2007 Gehrmann-De Ridder, Gehrmann, Glover ++ 2005ff Czakon 2010 Boughezal, Melnikov, Petriello 2012 Paola, Melnikov, Röntsch 2017 Stuart, Tackmann, Waalewijn 2010 Boughezal, Liu, Petriello 2015 Cacciari, Dreyer, Karlberg, Salam, Zanderighi 2015

Things I skipped...

NNLO O PS Hamilton, Nason, Re, Zanderighi 2013 Alioli, C.W. Bauer, Berggren, Tackmann, Walsh, Zuberi 2014 Höche, Li, Prestel 2014

gg→H with m_t effects Hamilton, Nason, Zanderighi 2015

WH, ZH Astill, Bizoń, Re, Zanderighi 2016, 2018

Things I skipped...

VBF: N³LO Dreyer, Karlberg 2018 HH: NLO $\hat{s} \rightarrow \infty$ Davies, Mishima, Steinhauser, Wellmann 2018 towards NNLO Davies, Herren, Mishima, Steinhauser 2018 Grigo, Hoff, Steinhauser 2015 De Florian, Mazzitelli 2015, 2018 De Florian, Grazzini, Hanga, Kallweit, Lindert, Meierhöfer, Mazzitelli, Rathlev 2016 Approximation methods Xu, Yang 2019 Borowka, Gehrmann, Hulme 2018 Analytic calculations Frellesvig, Bonciani, Del Duca, Moriello, Henn, Smirnov 2018 Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zola 2019 Chaubey, Weinzierl 2019

... and much more!

Things I skipped...

Decays...

Conclusions

Enormous progress within the last 10-20 years NLO: fully automated NNLO: state of the art First N³LO results Current challenge: 2-loop multileg

Conclusions

Enormous progress within the last 10-20 years NLO: fully automated NNLO: state of the art First N³LO results Current challenge: 2-loop multileg

Theory will be ready for the next step.

