Exploring Beyond-the-SM physics at Low Energy

Blois 2019

June 2019

Martín González-Alonso CERN-TH

Low-Energy Probes of New Physics

- I'll focus on precision measurements in non-forbidden processes:
 - Both exp & theory (lattice!) precision needed
 - Precision ~ $10^{-2} 10^{-3} \rightarrow \Lambda \sim O(1) \text{ TeV}$
 - Much higher scales if SM is suppressed $(\pi \rightarrow ev, CPV, CKM, ...)$
- Still a very wide subject:
 - Leptonic processes, flavor (kaons, B's, LFU, ...), ...
 - Nuclear decays, atomic PV, neutrino, ...
 - Z/W data (LEP & LHC), LEP2, top, Higgs, ... \rightarrow low-energy?
- I'll assume "heavy NP" \rightarrow Effective Field Theory

EFT 101

M. González-Alonso (CERN)

Low-energy BSM probes

EFT: motivation

Take your favorite precision experiment:

→ Implications for NP model M?

 $O_{i,exp} - O_{i,SM} = f_i (g', M')$

Nontrivial:

- Atomic/huclear/hadronic/PDF TH;
- Correlations;
- Cuts, SM assumed?
- Large logs resummation

EFT: motivation

Take your favorite precision experiment:

→ Implications for NP model M?

 $O_{i,exp}$ - $O_{i,SM}$ = f_i (g', M')

Nontrivial:

- Atomic/huclear/hadronic/PDF TH;
- Correlations;
- Cuts, SM assumed?
- Large logs resummation

(Sort of) well known in many cases Example: Electroweak Precision Data

(Sort of) well known in many cases Example: Electroweak Precision Data → Flavor-general (!!) SMEFT fit

> [Efrati, Falkowski & Soreq, JHEP'15; Falkowski & Mimouni, JHEP'16; Falkowski, MGA & Mimouni, JHEP'17]

- 258 experimental input •
 - Z- & W-pole data
 - $e^+e^-\rightarrow l^+l^-$, qq ۲
 - Low-energy processes: ۲
 - Nuclear and hadron decays $(d \rightarrow ulv)$
 - Neutrino scattering 0
 - PV in atoms and in scattering •
 - Leptonic tau decays •

Class	Observable	Exp. value
$\nu_e \nu_e q q$	$R_{\nu_e \bar{\nu}_e}$	0.41(14)
	$(g_L^{\nu_{\mu}})^2$	0.3005(28)
	$(g_R^{\nu_\mu})^2$	0.0329(30)
$ u_{\mu} u_{\mu}qq$	$\theta_L^{\nu_\mu}$	2.500(35)
	$\theta_R^{\nu_\mu}$	$4.56_{-0.27}^{+0.42}$
	$g_{AV}^{eu} + 2g_{AV}^{ed}$	0.489(5)
	$2g_{AV}^{eu} - g_{AV}^{ed}$	-0.708(16)
PV low-E eeaa	$2g_{VA}^{eu} - g_{VA}^{ed}$	-0.144(68)
ccqq	.eu .ed	-0.042(57)
	$g_{VA} - g_{VA}$	-0.120(74)
PV low-E	$b_{\rm SPS}(\lambda = 0.81)$	$-1.47(42) \cdot 10^{-4}$
$\mu\mu qq$	$b_{\rm SPS}(\lambda = 0.66)$	$-1.74(81) \cdot 10^{-4}$
$d(s) \to u \ell \nu$	$\epsilon_i^{d_j\ell}$	eq. (3.17)
	$\sigma(q\bar{q})$	
$e^+e^- \to q\bar{q}$	σ_c, σ_b	$f(\sqrt{s})$
	A_{FB}^{cc}, A_{FB}^{bb}	1

Class	Observable	Exp. value
11 11 00	$g_{LV}^{ u_{\mu}e}$	-0.040(15)
$\nu_{\mu}\nu_{\mu}\epsilon\epsilon$	$g_{LA}^{ u_{\mu}e}$	-0.507(14)
$e^-e^- ightarrow e^-e^-$	g^{ee}_{AV}	0.0190(27)
<i>u</i> o* <i>u u</i> ⁺ <i>u</i> ⁻	_σ	1.58(57)
$ u_{\mu}\gamma \rightarrow \nu_{\mu}\mu \mu$	$\sigma_{\rm SM}$	0.82(28)
	$G_{ au e}^2/G_F^2$	1.0029(46)
$T \rightarrow \ell \nu \nu$	$G_{ au\mu}^2/G_F^2$	0.981(18)
	$\frac{d\sigma(ee)}{d\cos\theta}$	
$e^+e^- \to \ell^+\ell^-$	$\sigma_{\mu}, \sigma_{ au}, \mathcal{P}_{ au}$	$f(\sqrt{s})$
	$A^{\mu}_{FB}, A^{\tau}_{FB}$	

Observable	Experimental value	Ref	SM prediction	Definition
Γ _z [GeV]	24952 ± 0.0023	[47]	2.4950	$\frac{\sum \Gamma(Z \to f\bar{f})}{\sum \Gamma(Z \to f\bar{f})}$
$\sigma_{\rm had} [{\rm nb}]$	41.541 ± 0.037	[47]	41.484	$\frac{12\pi}{m_Z^2} \frac{\Gamma(Z \to e^+e^-)\Gamma(Z \to q\bar{q})}{\Gamma_Z^2}$
Re	20.804 ± 0.050	[47]	20.743	$\frac{\sum_{q} \Gamma(Z \rightarrow q\bar{q})}{\Gamma(Z \rightarrow e^{+}e^{-})}$
R_{μ}	20.785 ± 0.033	[47]	20.743	$rac{\sum_{q} \Gamma(Z ightarrow q ar q)}{\Gamma(Z ightarrow \mu^+ \mu^-)}$
R_{τ}	20.764 ± 0.045	[47]	20.743	$rac{\sum_{q} \Gamma(Z o q ar{q})}{\Gamma(Z o au^+ au^-)}$
$A^{0,e}_{ m FB}$	0.0145 ± 0.0025	[47]	0.0163	$\frac{3}{4}A_e^2$
$A_{\rm FB}^{0,\mu}$	0.0169 ± 0.0013	[47]	0.0163	$\frac{3}{4}A_eA_\mu$
$A_{ m FB}^{ar 0, au}$	0.0188 ± 0.0017	[47]	0.0163	$\frac{3}{4}A_eA_{\tau}$
R_b	0.21629 ± 0.00066	[47]	0.21578	$\frac{\Gamma(Z \to bb)}{\sum_{q} \Gamma(Z \to q\bar{q})}$
R_c	0.1721 ± 0.0030	[47]	0.17226	$rac{\Gamma(Z ightarrow car{c})}{\sum_{q} \Gamma(Z ightarrow qar{q})}$
$A_b^{\rm FB}$	0.0992 ± 0.0016	[47]	0.1032	$\frac{3}{4}A_eA_b$
$A_c^{ m FB}$	0.0707 ± 0.0035	[47]	0.0738	$\frac{3}{4}A_eA_c$
A_e	0.1516 ± 0.0021	[47]	0.1472	$\frac{\Gamma(Z \rightarrow e_L^+ e_L^-) - \Gamma(Z \rightarrow e_R^+ e_R^-)}{\Gamma(Z \rightarrow e^+ e^-)}$
A_{μ}	0.142 ± 0.015	[47]	0.1472	$\frac{\Gamma(Z \to \mu_L^+ \mu_L^-) - \Gamma(Z \to \mu_R^+ \mu_R^-)}{\Gamma(Z \to \mu^+ \mu^-)}$
A_{τ}	0.136 ± 0.015	[47]	0.1472	$\frac{\Gamma(Z \to \tau_L^+ \tau_L^-) - \Gamma(Z \to \tau_R^+ \tau_R^-)}{\Gamma(Z \to \tau^+ \tau^-)}$
A_e	0.1498 ± 0.0049	[47]	0.1472	$\frac{\Gamma(Z \rightarrow e_L^+ e_L^-) - \Gamma(Z \rightarrow e_R^+ e_R^-)}{\Gamma(Z \rightarrow \tau^+ \tau^-)}$
A_{τ}	0.1439 ± 0.0043	[47]	0.1472	$\frac{\Gamma(Z \to \tau_L^+ \tau_L^-) - \Gamma(Z \to \tau_R^+ \tau_R^-)}{\Gamma(Z \to \tau^+ \tau^-)}$
A_b	0.923 ± 0.020	[47]	0.935	$\frac{\Gamma(Z \to b_L b_L) - \Gamma(Z \to b_R b_R)}{\Gamma(Z \to b\bar{b})}$
A_c	0.670 ± 0.027	[47]	0.668	$\frac{\Gamma(Z \to c_L \bar{c}_L) - \Gamma(Z \to c_R \bar{c}_R)}{\Gamma(Z \to c\bar{c})}$
A_s	0.895 ± 0.091	[48]	0.935	$\frac{\Gamma(Z \to s_L \bar{s}_L) - \Gamma(Z \to s_R \bar{s}_R)}{\Gamma(Z \to s\bar{s})}$
R _{uc}	0.166 ± 0.009	[45]	0.1724	$rac{\Gamma(Z ightarrow u ar{u}) + \Gamma(Z ightarrow c ar{c})}{2 \sum_q \Gamma(Z ightarrow q ar{q})}$

Observable	Experimental value	Ref.	SM prediction	Definition
$m_W \; [\text{GeV}]$	80.385 ± 0.015	[50]	80.364	$\frac{g_L v}{2} \left(1 + \delta m\right)$
$\Gamma_W [\text{GeV}]$	2.085 ± 0.042	[45]	2.091	$\sum_{f} \Gamma(W \to ff')$
$\operatorname{Br}(W \to e\nu)$	0.1071 ± 0.0016	[51]	0.1083	$\frac{\Gamma(W \rightarrow e\nu)}{\sum_{f} \Gamma(W \rightarrow ff')}$
$\operatorname{Br}(W \to \mu \nu)$	0.1063 ± 0.0015	[51]	0.1083	$\frac{\Gamma(W \to \mu\nu)}{\sum_{f} \Gamma(W \to ff')}$
$\operatorname{Br}(W \to \tau \nu)$	0.1138 ± 0.0021	[51]	0.1083	$\frac{\Gamma(W \to \tau \nu)}{\sum_{f} \Gamma(W \to ff')}$
R_{Wc}	0.49 ± 0.04	[45]	0.50	$\frac{\Gamma(W \rightarrow cs)}{\Gamma(W \rightarrow ud) + \Gamma(W \rightarrow cs)}$
R_{σ}	0.998 ± 0.041	[52]	1.000	$g_L^{Wq_3}/g_{L,\mathrm{SM}}^{Wq_3}$

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

Results given at the EW scale (QEDxQCD running included in precise low-E observables) [MGA, M. Camalich & Mimouni, PLB'17]

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

$$O = O_{SM} + O(c_1, c_2, ..., c_{80}) \rightarrow \chi^2 = \chi^2(c_i)$$

- Public likelihood: $\chi^2 = \chi^2(c_i)$ <u>www.dropbox.com/s/26nh71oebm4o12k/SMEFTlikelihood.nb?dl=0</u>
- It allows us to study the interplay of experiments in a more general setup
 - → eeqq: best bounds come from APV or CKM-unitarity! [competitive with LHC]

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

$$O = O_{SM} + O(c_1, c_2, ..., c_{80}) \rightarrow \chi^2 = \chi^2(c_i)$$

• Can't we do the same with flavor data?

• Practical complication: hadronic FF

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

$$O = O_{SM} + O(c_1, c_2, ..., c_{80}) \rightarrow \chi^2 = \chi^2(c_i)$$

• Can't we do the same with flavor data?

- Practical complication: hadronic FF
- LFU ratios: intense activity recently ("B anomalies") [Aebischer et al'19, Algueró et al'19, Ciuchini et al.'19, Arbey et al.'19, ...]

- 258 experimental input
- They constrain 61 combinations of Wilson Coefficients [Higgs / Warsaw basis]

$$O = O_{SM} + O(c_1, c_2, ..., c_{80}) \rightarrow \chi^2 = \chi^2(c_i)$$

• Can't we do the same with flavor data?

- Practical complication: hadronic FF
- LFU ratios: intense activity recently ("B anomalies") [Aebischer et al'19, Algueró et al'19, Ciuchini et al.'19, Arbey et al.'19, ...]
- UV meaning of the famous CKM-triangle plot? Still to be done in the general SMEFT The presence of CKM factors requires some care [Descotes-Genon, Falkowski, Fedele, MGA, & Virto, '19]

(Sort of) well known in many cases Example: Electroweak Precision Data

(Sort of) well known in many cases Example: Electroweak Precision Data Not so much in others Ex. #1: Hadronic Tau decays

Hadronic tau decays as NP probes

• Great EXP & TH precision used in the past to extract SM quantities: α_s , V_{us} , $(g-2)_{\mu,had}$, ...

• UV meaning?

Hadronic tau decays as NP probes

• Great EXP & TH precision used in the past to extract SM quantities: α_s , V_{us} , $(g-2)_{\mu,had}$, ...

• UV meaning?

$$\mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \left[\left(1 + \epsilon_L^{d\tau} \right) \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\ \left. + \epsilon_R^{d\tau} \; \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \; \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \bar{\tau} (1 - \gamma_5) \nu_\tau \cdot \bar{u} \left[\epsilon_S^{d\tau} - \epsilon_P^{d\tau} \gamma_5 \right] d \right]$$
 Cirigliano et al. '10
$$\left. + \epsilon_T^{d\tau} \; \bar{\tau} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\tau \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

• Precise data;

• Precise data;

[V. Cirigliano, A. Falkowski, MGA, & A. Rodríguez-Sánchez, PRL'19]

... But the QCD description is more involved → Hadronic physics probe;

• Precise data;

• Precise data;

[V. Cirigliano, A. Falkowski, MGA, & A. Rodríguez-Sánchez, PRL'19]

u

d

Τ

•

.

VS.

•

-

u T d V

• Precise data;

d T

• Precise data;

$$\epsilon_L^{\tau} - \epsilon_L^e + \epsilon_R^{\tau} - \epsilon_R^e + 1.7 \epsilon_T^{\tau} = (8.9 \pm 4.4) \cdot 10^{-3},$$

[V. Cirigliano, A. Falkowski, MGA, & A. Rodríguez-Sánchez, PRL'19]

[V. Cirigliano, A. Falkowski, MGA, & A. Rodríguez-Sánchez, PRL'19]

(Sort of) well known in many cases Example: Electroweak Precision Data

Not so much in others

Ex. #1: Hadronic Tau decays (no access to TTqq in the previous EWPO fit)

Ex. #2: Reactor neutrino oscillations [A. Falkowski, MGA, & Z. Tabrizi, JHEP'19]

JHEP'19]

- Similar to flavor physics: 0 = 0 (θ_i , Δm^2)
- NP constrained by the observed consistency: 0 = 0 (θ_i , Δm^2 , ϵ_j)

- Similar to flavor physics: 0 = 0 (θ_i , Δm^2)
- NP constrained by the observed consistency: 0 = 0 (θ_i , Δm^2 , ϵ_j)
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_\nu) = 1 - \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2\left(2\theta_{13}\right)$$

[PS: no anomaly in far/hear ratios]

[A. Falkowski, MGA, & Z. Tabrizi, JHEP'19]

- Similar to flavor physics: 0 = 0 (θ_i , Δm^2)
- NP constrained by the observed consistency: 0 = 0 (θ_i , Δm^2 , ϵ_j)
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_\nu) = 1 - \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2\left(2\theta_{13}\right)$$

[PS: no anomaly in far/near ratios]

• Precision: $\theta_{13} = 0.0856(29)$ [DayaBay'18, ~4M neutrino events!]

[A. Falkowski, MGA, & Z. Tabrizi, JHEP'19]

- Similar to flavor physics: 0 = 0 (θ_i , Δm^2)
- NP constrained by the observed consistency: 0 = 0 (θ_i , Δm^2 , ϵ_j)
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_\nu) = 1 - \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2\left(2\theta_{13}\right)$$

[A. Falkowski, MGA, & Z. Tabrizi,

- Precision: $\theta_{13} = 0.0856(29)$ [DayaBay'18, ~4M neutrino events!]
- Again: UV-meaning of the good agreement with the SM?

JHEP'191

- Similar to flavor physics: 0 = 0 (θ_i , Δm^2)
- NP constrained by the observed consistency: 0 = 0 (θ_i , Δm^2 , ϵ_j)
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_\nu) = 1 - \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2\left(2\theta_{13}\right)$$

[A. Falkowski, MGA, & Z. Tabrizi,

- Precision: $\theta_{13} = 0.0856(29)$ [DayaBay'18, ~4M neutrino events!]
- Again: UV-meaning of the good agreement with the SM?
 - No access to NC NSI (negligible matter effects): vvqq

JHEP'191

- Similar to flavor physics: 0 = 0 (θ_i , Δm^2)
- NP constrained by the observed consistency: 0 = 0 (θ_i , Δm^2 , ϵ_j)
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_\nu) = 1 - \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2\left(2\theta_{13}\right)$$

ντ

ρ

[A. Falkowski, MGA, & Z. Tabrizi,

u

d

JHEP'191

- Precision: $\theta_{13} = 0.0856(29)$ [DayaBay'18, ~4M neutrino events!]
- Again: UV-meaning of the good agreement with the SM?
 - No access to NC NSI (negligible matter effects): vvqq
 - Non-standard V-A ($e_{L}\gamma_{\mu}\nu_{\tau}$ $u_{L}\gamma^{\mu}d_{L}$) gets hidden: $\theta_{13} \rightarrow \theta'_{13}$ [Ohlsson-Zhang'09]

- Similar to flavor physics: 0 = 0 (θ_i , Δm^2)
- NP constrained by the observed consistency: 0 = 0 (θ_i , Δm^2 , ϵ_j)
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_{\nu}) = 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right) \sin^2 \left(2\theta_{13} - \alpha_D \frac{m_e}{E_{\nu} - \Delta} - \alpha_P \frac{m_e}{f_T(E_{\nu})}\right) + \sin \left(\frac{\Delta m_{31}^2 L}{2E_{\nu}}\right) \sin(2\theta_{13}) \left(\beta_D \frac{m_e}{E_{\nu} - \Delta} - \beta_P \frac{m_e}{f_T(E_{\nu})}\right) + \mathcal{O}(\epsilon_X^2)$$

Vτ

ρ

[A. Falkowski, MGA, & Z. Tabrizi,

u

d

JHEP'191

- Precision: $\theta_{13} = 0.0856(29)$ [DayaBay'18, ~4M neutrino events!]
- Again: UV-meaning of the good agreement with the SM?
 - No access to NC NSI (negligible matter effects): vvqq
 - Non-standard V-A ($e_{L}\gamma_{\mu}\nu_{\tau}$ $u_{L}\gamma^{\mu}d_{L}$) gets hidden: $\theta_{13} \rightarrow \theta'_{13}$ [Ohlsson-Zhang'09]
 - S, T and Im(V+A) can be probed

u

d

Vτ

e

- Similar to flavor physics: 0 = 0 (θ_i , Δm^2)
- NP constrained by the observed consistency: 0 = 0 (θ_i , Δm^2 , ϵ_j)
- Concrete example: short-baseline reactor neutrino experiments

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_{\nu}) = 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right) \sin^2 \left(2\theta_{13} - \alpha_D \frac{m_e}{E_{\nu} - \Delta} - \alpha_P \frac{m_e}{f_T(E_{\nu})}\right) + \sin \left(\frac{\Delta m_{31}^2 L}{2E_{\nu}}\right) \sin(2\theta_{13}) \left(\beta_D \frac{m_e}{E_{\nu} - \Delta} - \beta_P \frac{m_e}{f_T(E_{\nu})}\right) + \mathcal{O}(\epsilon_X^2)$$

[A. Falkowski, MGA, & Z. Tabrizi,

JHEP'19]

Summary

- Many precious low-E precision measurements
- The (SM)EFT is an *efficient* framework to combine / compare / interpret precision low-E experiments
- Intense activity in recent years: EFT basis, RGEs, global fits, BSM matching, ...
- The UV information of many precision measurements has not been explored:
 - $\tau \rightarrow \pi \pi \nu$ [V. Cirigliano, A. Falkowski, MGA, & A. Rodríguez-Sánchez, PRL'19]
 - Reactor neutrinos
 [A. Falkowski, MGA, & Z. Tabrizi, JHEP'19]

M. González-Alonso (CERN)

Low-energy BSM probes

Backups

eeqq interactions

 $\overline{\bar{\ell}_1 \gamma_\mu \ell_1 \cdot \bar{q}_1 \gamma^\mu q_1}$

	c _{lq} x 10 ³
APV	1.6 ± 1.1
QWEAK	-2.3 ± 4.0
PVDIS	24 ± 35
LEP-2	-42 ± 28

LHC $2.5^{+1.9}_{-2.5}$

Less precision compensated by higher E: A4f ~ s/N²

LHC run 2 & HL-LHC $\rightarrow \sim 10^{-4}$ level bounds [Greljo-Marzocca, 2017]

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Laser Cooling of Ra ions for Atomic Parity Violation
May 31, 2017

L. Willmann¹, K. Jungmann¹, N. Severijns², K. Wendt³

"The ion Ra+ renders the possibility for a Sx improvement in the accuracy of $\sin^2\,\theta_{\rm w}$ within 1 week of measurement time"

[Falkowski, MGA & Mimouni, 2017]

M. González-Alonso (CERN)

Global EFT fit of flavor data?

- Difficulties (flavor vs EWPO):
 - Nonperturbative QCD input (form factors);
 - CKM parameters (no hierarchy of observables)

- Traditional approach:
 no NP in tree-level extraction of CKM from CC processes
 - \rightarrow Makes sense ($\Lambda_{NP} >>$ TeV in other processes), but...
 - It's unnecessary
 - Inconsistent with the EFT counting / philosophy;
 - BSM ~ SM-like?
 - Hints in R(D), R(D*) [only 0.3 "suppression"]
 - Tree-level CC processes can be very suppressed (CKM, chiral suppression, ...)

• UV-meaning of the consistency of the whole CKM paradigm???

CKM parameters in the SMEFT

[Descotes-Genon, Falkowski, Fedele, MGA, & Virto, 1812.08163]

$$O = O_{SM} (\mathbf{W}_i; \mathbf{\theta}_k) + O (\mathbf{W}_i; \mathbf{\theta}_k; \mathbf{c}_i)$$

$$\rightarrow \chi^2 = \chi^2 (\mathbf{\widetilde{W}}_i; \mathbf{\theta}_k; \mathbf{c}_i)$$

$$\rightarrow \chi^2 = \chi^2 (\mathbf{c}_i)$$

 $W_i=(\lambda,A,\rho,\eta)$

• Four "optimal" observables;

 $\Gamma(K \to \mu \nu_{\mu}) / \Gamma(\pi \to \mu \nu_{\mu}), \quad \Gamma(B \to \tau \nu_{\tau}), \quad \Delta M_d, \quad \Delta M_s.$

→ Four tilde Wolfenstein parameters;
→ NP effects in them known (not neglected);

$$\begin{pmatrix} \tilde{\lambda} = \lambda + \delta \lambda \\ \tilde{A} = A + \delta A \\ \tilde{\rho} = \bar{\rho} + \delta \bar{\rho} \\ \tilde{\eta} = \bar{\eta} + \delta \bar{\eta} \end{pmatrix} = \begin{pmatrix} 0.22537 \pm 0.00046 \\ 0.828 \pm 0.021 \\ 0.194 \pm 0.024 \\ 0.391 \pm 0.048 \end{pmatrix}, \quad \rho = \begin{pmatrix} 1 & -0.16 & 0.05 & -0.03 \\ \cdot & 1 & -0.25 & -0.24 \\ \cdot & \cdot & 1 & 0.83 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

• Any other flavor observable becomes a NP probe: $O_{\alpha} = O_{\alpha,\text{SM}}(W_j) + \delta O_{\alpha,\text{NP}}^{\text{direct}} = O_{\alpha,\text{SM}}(\widetilde{W}_j) + \delta O_{\alpha,\text{NP}}^{\text{indirect}} + \delta O_{\alpha,\text{NP}}^{\text{direct}}$

Tau, EWPO & LHC searches

Tau, EWPO & LHC searches

Oscillations in EFT

Oscillation in the SM:

$$P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}(L, E) = \sum_{k,j} U_{\alpha k} \, U_{\beta k}^* \, U_{\alpha j}^* \, U_{\beta j} \, \exp\left(-i \, \frac{\Delta m_{kj}^2 L}{2E}\right)$$

Oscillation in EFT:

$$P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\alpha}}(L, E_{\nu}) = \sum_{JK} C^{\alpha}_{JK} \exp\left(-i\frac{\Delta m^2_{JK}L}{2E_{\nu}}\right), \qquad C^{\alpha}_{JK} \equiv \frac{\left(\int A^P_{\alpha J} A^{P\,*}_{\alpha K}\right)\left(\int A^D_{J\alpha} A^{D\,*}_{K\alpha}\right)}{\left(\sum_{I} \int |A^P_{\alpha I}|^2\right)\left(\sum_{I'} \int |A^D_{I'\alpha}|^2\right)}$$

Production and Detection amplitudes

$$A^{P}_{\alpha J} \equiv \mathcal{M}(X^{P} \to \ell_{\alpha}^{-} \bar{\nu}_{J} Y^{P}), \qquad A^{D}_{J\alpha} \equiv \mathcal{M}(\bar{\nu}_{J} X^{D} \to \ell_{\alpha}^{+} Y^{D})$$

$$A^P_{\alpha J} = U_{\alpha J} M^P_L + \sum_{X=L,R,S,P,T} [\epsilon_X U]_{\alpha J} M^P_X, \qquad A^D_{J\alpha} = U^{\dagger}_{J\alpha} M^D_L + \sum_{X=L,R,S,P,T} [U^{\dagger} \epsilon^{\dagger}_X]_{J\alpha} M^D_X$$

EFT in reactor experiments

The survival probability in the SM+V-A+detection+production:

$$P_{\bar{\nu}_e \to \bar{\nu}_e}(L, E_{\nu}) = 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right) \sin^2 \left(2\tilde{\theta}_{13} - \alpha_D \frac{m_e}{E_{\nu} - \Delta} - \alpha_P \frac{m_e}{f_T(E_{\nu})}\right) + \sin \left(\frac{\Delta m_{31}^2 L}{2E_{\nu}}\right) \sin(2\tilde{\theta}_{13}) \left(\beta_D \frac{m_e}{E_{\nu} - \Delta} - \beta_P \frac{m_e}{f_T(E_{\nu})}\right) + \mathcal{O}(\epsilon_X^2)$$

$$\tilde{\theta}_{13} = \theta_{13} + \operatorname{Re}\left[L\right]$$

$$\alpha_D = \frac{g_S}{3g_A^2 + 1} \operatorname{Re} \left[S \right] - \frac{3g_A g_T}{3g_A^2 + 1} \operatorname{Re} \left[T \right], \qquad \alpha_P = \frac{g_T}{g_A} \operatorname{Re} \left[T \right]$$
$$\beta_D = \frac{g_S}{3g_A^2 + 1} \operatorname{Im} \left[S \right] - \frac{3g_A g_T}{3g_A^2 + 1} \operatorname{Im} \left[T \right], \qquad \beta_P = \frac{g_T}{g_A} \operatorname{Im} \left[T \right]$$

Survival probability at the leading order depends only on off-diagonal Wilson coefficients ϵ_x !!!

$$\begin{aligned} [L] &\equiv e^{i\delta_{\rm CP}} \left(s_{23}[\epsilon_L]_{e\mu} + c_{23}[\epsilon_L]_{e\tau} \right) \\ [S] &\equiv e^{i\delta_{\rm CP}} \left(s_{23}[\epsilon_S]_{e\mu} + c_{23}[\epsilon_S]_{e\tau} \right) \\ [T] &\equiv e^{i\delta_{\rm CP}} \left(s_{23}[\epsilon_T]_{e\mu} + c_{23}[\epsilon_T]_{e\tau} \right) \end{aligned}$$

