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The Case For Dark Matter

The Case for Dark Matter

Observations
from

There is extensive evidence for the presence of
Dark Matter in the Universe

» Galactic rotation curves

» Measurements of the CMB

» Weak Lensing, Clustering and Galactic
dynamics (e.g. Bullet cluster)

atter
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THE CASE FOR




QCD generically contains a CP violating term:
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© is arbitrary in the range: 0 < © < 2n

Places unnatural fine tuning of parameter:
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The Axion cancels the CP-violating term by
rolling down a potential
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Introduces a (light) massive spin-0 particle, with
very weak couplings to the Standard Model




The Axion cancels the CP-violating term by
rolling down a potential
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Introduces a (light) massive spin-0 particle, with
very weak couplings to the Standard Model

Field starts with some initial potential energy

Field oscillating throughout the universe
behaves exactly like dark matter!

a(t) = Y ZDM o
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Strong CP-Problem 5

The Axion Solves the Strong-CP Problem and Creates Dark Matter!

» The Axion cancels the CP-violating term by
rolling down a potential

= THE AXION MIRACLE?
el rrR( |F THE AXION EXISTS, IT CONTRIBUTES TO THE DARK
very weak cou MATTER DENSITY

» Field starts with some initial potential energy

» Field oscillating throughout the universe
behaves exactly like dark matter!

a(t) = Y ZDM o
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Detecting Axion Dark Matter

Particle vs Field

WIMPs behave like a dilute gas of : . . .
particles zipping around. Occasionally @ v
one might bump into our detector. ‘ ~® @

A few WIMPs per liter of space.
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Detecting Axion Dark Matter 6

Particle vs Field
,.0 e

WIMPs behave like a dilute gas of
particles zipping around. Occasionally @ .
one might bump into our detector. . '

A few WIMPs per liter of space.
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Detecting Axion Dark Matter 6

Particle vs Field

WIMPs behave like a dilute gas of . :
particles zipping around. Occasionally @ . -
one might bump into our detector. =

A few WIMPs per liter of space.
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Axions have a much higher number density
and so behave like a classical field. Creating
a very weak oscillating “wind” that we
search for.

~10'8 axions per liter of space
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Detecting Axion Dark Matter 6

Particle vs Field

WIMPs behave like a dilute gas of / ' . .
particles zipping around. Occasionally @ :
one might bump into our detector. . Q ./ T

A few WIMPs per liter of space.
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Axions have a much higher number density
and so behave like a classical field. Creating
a very weak oscillating “wind” that we
search for.

~10'8 axions per liter of space
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Physics of ABRACADABRA

Axion Electrodynamics

» Axion dark matter creates new terms

in Maxwell's equations. Modifies
Electromagnetism!

» Jayyis the axion photon coupling
(expected to be very small).
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Physics of ABRACADABRA

Axion Electrodynamics

» Axion dark matter creates new terms

in Maxwell's equations. Modifies
Electromagnetism!

» Qayyis the axion photon coupling
(expected to be very small).

» Inthe presence of a large static magnetic field, ADM creates an “effective
current” that generates oscillating magnetic fields in response

VXB:(?EI _ OE

ot ot

et = Javy~y \/QIODMBO COS (mat)
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ABRACADABRA 8

roadband/Resonant Approach to Cosmic Axion Detection with an
mplifying 5-Field Ring Apparatus

» Start with a toroidal magnet with a fixed
magnetic field By

IRout

Phys. Rev. Lett. 117, 141801 (2016)
% 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



ABRACADABRA 8

roadband/Resonant Approach to Cosmic Axion Detection with an
mplifying 5-Field Ring Apparatus

» Start with a toroidal magnet with a fixed
magnetic field By

» ADM generates an oscillating effective
current around the ring (MQS approx:
A>R)

Phys. Rev. Lett. 117, 141801 (2016)
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ABRACADABRA 8

roadband/Resonant Approach to Cosmic Axion Detection with an
mplifying 5-Field Ring Apparatus

» Start with a toroidal magnet with a fixed
magnetic field By

» ADM generates an oscillating effective
current around the ring (MQS approx:
A>R)

» ...this generates an oscillating magnetic
field through the center of the toroid

Phys. Rev. Lett. 117, 141801 (2016)
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ABRACADABRA 8

roadband/Resonant Approach to Cosmic Axion Detection with an
mplifying 5-Field Ring Apparatus

» Start with a toroidal magnet with a fixed
magnetic field By

» ADM generates an oscillating effective

current around the ring (MQS approx:
A>R)

» ...this generates an oscillating magnetic
field through the center of the toroid

» Insert a pickup loop in the center and
measure the induced current in the loop

read out by a SQUID based readout

(I)(t) — gavamaX 2,0DM COS(mat)gVV

Phys. Rev. Lett. 117, 141801 (2016)
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ABRACADABRA 9

ABRACADABRA Readout Modes

» ABRACADABRA will require very
sensitive current detectors

= SQUID current sensors

» Huge overlap with developments in
Quantum Computing

= Small signals, long coherence times

» Long term goal to push beyond the
Standard Quantum Limit

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019
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Current State Of Axion Search

LSW
(OSQAR)

—h
o|
(o)}

—h
ol
(00)

—

O|
—
o

Fermi
SN 1987A

—

o|
—
N

Haloscopes
(ADMX and others

>
()]
)
=
<
©)
(@))
c
=
-
(@]
3
C
S
X
&

—

o
-
N

—_
o
-
- o
o
o
o

Axion Mass my (eV)

| Helioscopes (CAST) || " 7
H s t

| _Telescopes |

From the PDG




10

Current State Of Axion Search
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A PROTOTYPE DETECTOR

ABRACADABRA-10CM




ABRACADABRA-10 cm
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Dissecting ABRACADABRA-10 cm




ABRACADABRA-10 cm
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Dissecting ABRACADABRA-10 cm




ABRACADABRA-10 cm
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Dissecting ABRACADABRA-10 cm
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ABRACADABRA-10 cm

Assembling ABRACADABRA-10 cm

Non-magnetic
support structure

Copper
thermalization

Superconducting

Superconducting Shielding

pickup loop, mounted
on teflon tube

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



ABRACADABRA-10 cm 14

ABRA Mounted In Dilution Refrigerator




[N ABRACADABRA-10 CM
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Perform calibration by injecting A BRACADABR AT o

. . . 1 Phys. Rev. D 99, 052012 (2019)
current into the calibration loop
measuring the spectrum

—
N
=
~
o~
-
A=
=

FLL Output Powe
5|

Fine scan from 10 kHz - 3 MHz at
multiple amplitudes
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Frequency (Hz)

Requires a total of ~90 dB of

attenuation to get “reasonable” )
size signals L
Gain lower than expected by a e |

factor of ~6.5 (suspect parasitic S 111
inductance)
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Perform calibration by injecting
current into the calibration loop
measuring the spectrum

Fine scan from 10 kHz - 3 MHz at
multiple amplitudes

Requires a total of ~90 dB of
attenuation to get “reasonable”
size signals

Gain lower than expected by a
factor of ~6.5 (suspect parasitic
inductance)
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10°s ABRACADABRA-10 cm
_1Phys. Rev. D 99, 052012 (2019)

ABRA Pickup Loop Flux Response

ABRACADABRA-10 cm
Phys. Rev. D 99, 052012 (2019)

xpected
—¥— Input Amplitude 5.0
Input Amplitude 10.0
=¥ Input Amplitude 50.0
=¥ Input Amplitude 100.0

WWM

10°
Frequency (Hz)

Y [ N | M ‘\
ABRA(Mcm

Phys Rev. D99, 052012 7019)
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Magnet On Data
— Aug01,2018 18:50:51 - Aug 02,2018 03:44:11 EDT, Nayg = 3200

—— ADC Noise (Filter Corrected)

ABRACADABRA-10 cm ||||Ill|w
Phys. Rev. D 99, 052012 (2019

5
10

Frequency (Hz)

Collected a total of 1 month of Magnet On data from July -
August of 2018.

And an additional 2 weeks of Magnet Off (background) data.
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Magnet On Data
— Aug01,2018 18:50:51 - Aug 02,2018 03:44:11 EDT, Nayg = 3200

—— ADC Noise (Filter Corrected)

Environmental

Noise
SQUID Noise Floor /

ABRACADABRA-10 cm
Phys. Rev. D 99, 052012 (2019)
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Frequency (Hz)

Collected a total of 1 month of Magnet On data from July -
August of 2018.

And an additional 2 weeks of Magnet Off (background) data.



18

mg (neV)
2.5227500 2.5227525 2.5227550 2.5227575 2.5227600 2.5227625 2.5227650 2.5227675

405000 A B RACADA BRA - ] O cm —— Pickup Loop Flux Data

—-—' Background Only Fit
Background + 95% C.L. Signal
—— Background + 50 Signal

[(u®3/Hz

We saw no 50 excesses that were not
vetoed by Magnet off or digitizer

data
99.8% signal efficiency

Pickup Loop Flux Power

609.998 609.999 610.000 610.001 610.002 610.003
Frequency (kHz)

Frequency [Hz]

—— 95% Upper Limit - This Work 1/20 Containment

We place 95% C.L. upper limits using
a similar log-likelihood ratio approach ——a

Jayy [1/GeV]

PHYS. REV. LETT. 122, 121802 (2019)
PHYS. REV. D 99, 052012 (2019)

ABRACADABRA-10 cm
Phys. Rev. Lett. 122, 121802 (2019)
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QCD Axion
CAST
ADMX G2 (Projected)

BN ADMX

— ABRACADABRA-10 cm 95% Limit
(This Work)




QCD Axion
CAST
ADMX G2 (Projected)

BN ADMX

— ABRACADABRA-10 cm 95% Limit
(This Work)




QCD Axion

CAST

ADMX G2 (Projected)
ADMX

ABRACADABRA-10 cm 95% Limit
(This Work)




QCD Axion

CAST

ADMX G2 (Projected)
ADMX

ABRACADABRA-10 cm 95% Limit
(This Work)
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ABRACADABRA-10 cm Run Il 21

Second Run of ABRACADABRA-10 cm

» Currently installing a new
larger pickup cylinder

» Improved coupling to axion

induced field

» Lower total inductance

» Expected to improve ADM
sensitivity by about 1 order of
magnitude

‘
\\
/ \W
‘ ‘
il |
A\

N
\ \
NS

» Expecting to begin data
taking later in the summer.

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



ABRACADABRA Next Generation 22

1 m Scale ABRACADABRA FE

E ADMX

— ABRACADABRA-10 cm 95% Limit
(This Work)

» Goal: Probing the QCD scale axion from
~peV down to ~neV (GUT scale axion)

» A ~ meter scale detector with a max
field of Bo~1-5T

» Resonator readout with accelerated
scan readout strategy

» Quantum sensors able to push
beyond the Standard Quantum Limit

» Operating at or below 100 mK

2.25m

» We have already begun putting together
an interest group and a CDR to follow

v
%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019
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Frequency [Hz]
10° 10°

Current ABRA-10cm

ABRA-40cm

ABRA-QCD

---- Broadband 5¢ Detection Threshold
—-— Broadband Expected Constraint
---- Resonant Ho Detection Threshold

Resonant Expected Constraint

10— 10-7 10~

QCD Axion Broadband 1o Expected Constraint |

CAST Broadband 20 Expected Constraint
Bl ADMX Il Resonant 1o Expected Constraint
7 ADMX Projection B Resonant 20 Expected Constraint




Axion Dark Matter Outlook 23

Axion Dark Matter Outlook

» The axion is the leading solution to the Strong-CP problem and is a compelling Dark
Matter candidate

» Leveraging the recent advances in quantum measurement technology, the full axion
Dark Matter parameter space could be probed in the next 10 ~ 15 years

» This would require a range of detector technologies all pushing beyond the Standard
Quantum Limit

Axion Frequency

Hz kHz MHz GHz
| | | | | | | | | | | |

Axion Dark Matter

ABRACADABRA/
DMRadio
(Lumped Elements)

ADMX/HAYSTAC MADMAX

(Cavities) (Dielectric Array)

peV neV pevV meV

Axion Mass
% 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



QCD Axion

CAST

ADMX G2 (Projected)
Il ADMX

— ABRACADABRA-10 cm 95% Limit
(This Work)

We have built and operated the first
broadband search for Axion Dark Matter in
the sub peV range.

With a 10 cm scale detector and 1 month of
exposure, we are competitive with the
leading limits in the field! 100

mg (V)
Frequency [Hz]

—— 95% Upper Limit - This Work H 1/20 Containment
Expected Limit mmmmm CAST Exclusion

Currently preparing for a second run of
ABRACADABRA-10 cm with ~ 1 order of

magnitude improvement in sensitivity

Gayy [1/GeV]

Putting together a proposal fora ~1 m scale
experiment (ABRACADABRA-75 cm)

AR

ABRACADABRA-10 cm
Preliminary




ABRACADABRA Collaboration 25

(A\“ “\‘\\\

CYCLING

% 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019
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Axion Dark Matter

27

Cosmic Neutrinos vs Cosmic Axions

AR

» Inthe early universe (t<1 s), the neutrinos are
thermalized to the plasma

» After they decouple, they are hot and relativistic for
most of cosmic history

» They are not COLD dark matter!

31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



Axion Dark Matter

27

Cosmic Neutrinos vs Cosmic Axions

» Inthe early universe (t<1 s), the neutrinos are
thermalized to the plasma

» After they decouple, they are hot and relativistic for
most of cosmic history

» They are not COLD dark matter!

» All axions start at the same alignment
» Very very cold!

» Energy density comes from field potential
and kinetic energy

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019




AXION COUPLING TO EM

THREE MASS REGIMES
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AXION COUPLING TO EM
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AXION COUPLING TO EM

THREE MASS REGIMES Long compton  taboratory

Wavelength Scale
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AXION COUPLING TO EM

THREE MASS REGIMES Long Compton Laboratory  Short Compton
Wavelength Scale Wavelength
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®(t) = garyV 20DMV Gy Bmax cos(mgt) + n(t)

Jary~ \/Z/ODMVQVBIH&X < |7’L‘

Option A: Measure and Average
Can search all frequencies simultaneously

Averaging is really slow

AR

f=ma/2m :
Af~1/Av? ~107°

Noise Floor

10° 10°

Frequency [Hz]
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Axion Mass [eV]
10—11 10—10

f=mg/2m
®(t) = gayyV/ 20DMV Gy Bmax cos(mgt) + n(t) Af~1/A02 ~ 1070 &

N
I
Y
~
g
-
[J]
3
o
(a1

Noise Floor

ga’y’y \/Z/ODMVQVBIH&X < |7’L‘

—— Standard Halo Model

== Axion Frequency

Option A: Measure and Average
Can search all frequencies simultaneously

Averaging is really slow

Option B: Lock in and amplify one frequency Line Width
1 uHz 1 mHz 1 Hz 10 Hz
Can quickly pull signal from noise . I ) b
, . LB LELL B LR BRI L SRR S SR e
Don’t know what frequency to amplify! Hz kHz MHzZ GHz

g Frequency
%
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The coherence time for an axion signal
is given by
AD 1

v Mg V2

And leads to a spread in the peak of

Af/f ~1/v* ~107°

i

Standard Halo Model

il

MM n




ABRACADABRA 31

An Axion Signal ) T

Sun

\Milky Way disk

- ™ Direction of motion
railin 'tndal ¢ {A%"Ff‘m) <
ebris : @

Sgr.core

» Another (fun) possibility is the presence
of substructure within the Dark Matter
Halo

o =
Ta

» If the velocity distribution of this
substructure is much smaller, you can

David R.Law
UCLA

Axion Mass [eV]

have coherence times much much larger.
Standard Halo Model
+ Infalling Structure

» Opens the possibility of Axion
astrophysics!

N
I
~~
~
©
-
o
=
o
o

» See Foster, Rodd, Safdi 2017
(arXiv:1711.10489)

Frequency [HZ]
% 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019




ABRACADABRA-10 cm

32

Dissecting ABRACADABRA-10 cm

G10 Support structure Superconducting tin

(nylon bolts coated copper shield

Thermalization Bands
% 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



ABRACADABRA-10 cm 33

Assembling ABRACADABRA-10 cm

AR
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SUPERCONDUCTING SYSTEMS INC.

(Normally make MRI magnets!)
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ABRACADABRA-10 cm 33

Assembling ABRACADABRA-10 cm
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SUPERCONDUCTING SYSTEMS INC.

(Normally make MRI magnets!)
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ABRACADABRA-10 cm 33

Assembling ABRACADABRA-10 cm

&

SUPERCONDUCTING SYSTEMS INC.

(Normally make MRI magnets!)

- -
%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7,2019



ABRACADABRA

34

ABRACADABRA Readout Modes

» ABRACADABRA will require very sensitive
current detectors — SQUID current sensors

» Broadband mode sensitive to all
frequencies or resonant mode that amplifies

one frequency and requires scanning

» Thermal noise limits require cooling the
detectorto 10 - 100 mK

» Huge overlap with developments in Quantum
Computing, and aim to push beyond the
Standard Quantum Limit

AR

31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019
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ABRACADABRA 35

ABRACADABRA Resonant Readout

Resonator

» Insert a resonator into the circuit that resonantly
enhances the signal before the SQUID noise is
introduced

» Resonator is charged when driven on resonance
by the axion field

» Pickup loop acts as a weak coupling between

axion field and resonator
Axion Field Resonator

» Power flowing into our resonator is tiny, so
power flowing out should be comparably small

High Q resonator

The need to scan (and scan quickly) Pickup Loop

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



ABRACADABRA-10 cm 36

First Readout Configuration

» Off the shelf Magnicon DC SQUIDs
» Typical noise floor ~1 u®y/(Hz)/2

» Optimized for operation < 1 K

» Typical gain of ~1.3 V/®¢S wolts per

SQUID flux quanta) Quick note on units:

» No resonator (|e broadband We measure magnetic flux in
readout) units of micro flux quanta (u®o)

(I)() — 2 X 10_15 Wb

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



ABRACADABRA-10 cm

37

suspension System

» Vibration isolation suspension system o

» 150 cm pendulum, with a resonance e

frequency of ~ 2 Hz

25K

» Inthe Z direction, a spring with a resonance
frequency of ~8 Hz

800 mK

300 mK

» Supported by a thin Kevlar thread with very
poor thermal conductivity 100 mK

» Can be upgraded with minus-K isolation

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



ABRACADABRA-10 cm
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Suspension System

‘ hmh'," - . : ‘w :
< ot :

300 K

40 K

25K

800 mK

300 mK

100 mK

% 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019
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*Accelerometer loses

sensitivity above a few
kHz
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ABRACADABRA-10 cm
Preliminary

10°

Huge amount of noise below ~10 kHz, strongly correlated with vibration on
the 300K plate

Had to use a 10kHz high pass filter to get the data to fit in the digitizer window

Hard limit on the low end search window



Building ABRACADABRA-10 cm 40

Superconducting Wiring Boiling turpenine

» Magnet wiring is
NbTi(CuNi)

» All readout wiring and
calibration loop is solid

NbTi

» Readout wiring run inside
single core solder wire |
Superconducting
that has had the flux solder capillary
shield!
removed

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019



ABRACADABRA-10 cm 41

Magnetic Shielding

» Two layers of mu-metal shielding
» Recycled from the Bates Accelerator Pipe

» DC Attenuation ~ 10x

%\ D 31st Rencontres de Blois, Partlcle Phys:cs andCosmoIogy June 2- 7,2019



ABRACADABRA-10 cm Data 42

Broadband Data Collection Procedure

» Collected data with magnet on continuously for 4 weeks from July - August
» Sampling at 10 MS/s for 2.4 x 10¢ seconds (25T samples total)

» Digitizer locked to a Rb oscillator frequency standard

» Acquisition (currently) limited to 1 cpu and 8 TB max data size

10 MS/s Sampling 1 MS/s Sampling 100 kS/s Sampling
Average PSDs of Average PSDs of e _
10 s waveforms 100 s waveforms Written directly to disk
Written to disk every 800 Written to disk every 2,452,000 seconds total
seconds 1600 seconds Af~ 408 nhz

 Af=100mhz Af= 10 mhz
%% 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019
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Collected data with magnet on Af = 100 mHz
continuously for 4 weeks from July B

- August f

Sampling at 10 MS/s for 2.4 x 106 |G

seconds (25T samples total)

Digitizer locked to a Rb oscillator
frequency standard | MS/s Spectrum

~
N
=
o
-
=)
N’
-
o
g
o
A

Continuously transforming and
downsampling = simultaneously

produced a 10MS/s, 1MS/s and
100kS/s spectrum e

! Frequency (Hz)

Power (mV?2/Hz)

— 100 kS/s Spectrum

4




A

Clean Data Period
Aug 01,2018 21:50:51 - Aug 02, 2018 06:44:11 EDT, fs = 10000000 MS/s, Af=0.10 Hz, Nayg = 3200

Noisy Data Period
Jul 31,2018 10:15:31 - Jul 31, 2018 19:08:51 EDT, fs = 10000000 MS/s, Af= 0.10 Hz, Nayg = 3200

A

A~

[ a4

ABRACADABRA-10 cm m
Preliminary [ “
IAM\&M,,” b

L A A T v ™

10°

AB RAC‘A DAB RA_ 1 O cm Frequency (Hz)

Pl C 1 iminar y 1410000 1420000 1430000 1440000 1450000

N
jan
S~
N
=
=
=
=
5]
2
o
=%

— 1.8800200 MHz
— 1.8800218 MHz

10 15
Time Since Start of Run (days)

Appeared after we were in the lab
Seemed to be correlated with working hours?

Investigating the digitizer/DAQ computer, grounding schemes, shielding,
etc...
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Magnet On Data
— Aug 01,2018 21:50:51 - Aug 02,2018 06:44:11 EDT, Nayg = 3200

Magnet Off Data
Aug 18,2018 01:11:59 - Aug 18,2018 10:05:19 EDT, Nayg = 3200

—— ADC Noise (Filter Corrected)

HW Mh Wi

~
N
an
~
NO
S
—
N’
St
o
5
o
A
>
=
F~
o
)
Q
—
o
=
=4
2
(oW

; JABRACADABRA-10 cm
Preliminary

Averaged over ~9

Frequency (Hz)

Collected 2 weeks of magnet off data with the same configuration
High frequency transient noise also present
Significantly lower noise background around 10kHz (vibration of stray fields)

Used for spurious signal veto
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Time averaged flux through the pickup loop:

<(I)%)ickup> — gc%qxfprMVQQZBrznaX =3| (Units:

383000

382500

382000

381500

381000

~~
=
NO
S
=1
N’
v
=
i
o
]
o]
._1
£
kv
2
-9

380500

380000

Integral = A —— Example Data

== == RBest Fit
A Y
A Y
it
Velocity distribution
of DM in the halo

|'“
| l“ (I

I ’

609.999 610.000 610.001
Frequency (kHz)

u®3/Hz)
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Rebin the data into 53 (24) of our 10 MS/s (1 MS/s) spectra that span the data taking period
Limit our search range to 75 kHz - 2 MHz (m, in 0.31 — 8.1 neV)

For each mass point, we calculate a likelihood function

NSpectra NFreq
L = H H Erlang(NAvg7 Si,k -+ b’&) 383000

J
Power bins are Erlang distributed with 382500
shape parameter N,4(average over N4
exponential distributions) and mean s; +b;

Example Data
== == Best Fit

382000
381500

Depends only on g,,, and nuisance 381000

parameters, b;, which are assumed to be
constant across the axion signal, but can
vary slowly in time

—~
N
asi
~
aNO
=
=%
~"
o]
=
S
o
=}
Q
—
oy
=3
=4
2
[aF}

380500

380000

609.999 610.000 610.001

Frequency (kHz)
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We then perform our axion discovery search based on a log-likelihood
ratio test, between the best fit and the null hypothesis

TS =2 108 £ (§ary ma; B) =108 £ (gary = 0,710, b)|

Profiling over all nuisance parameters, b;

We set the 5o discovery threshold
as TS>56.1 (accounting for the
Look Elsewhere Effect for our 8M
HERS points) "3 ABRACADABRA-10 cm

Preliminary

—_
—
=

—
p—
w

+
=
=
=
=

v

J—
=
Y
=

=
=
—
=
=

[p]

——  Observed
——  Expected
= 50 Threshold

- 100
e Test Statistic

10!
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Voltage Transfer Function in the Calibration Network

v 60 dB of warm attenuation

Voltage Gain |Vp/Vip|

v Readout circuit

Current Transfer (|Ic/Vin| in pA/mV)

v Cold attenuator performance

Frequency (Hz) Frequency (Hz)

v SQUID noise is approximately
as expected

v Parasitic resistance in the circuit

— SQUID Flux 0" 17 — FLL Output

1 10' 10° 10° 107 0’ 10 10° 10° 107 10°
F | u X CO u p | I n g ? Frequency (Hz) Frequency (Hz)

SQUID Flux Transfer (|¢ps/Vin| in p®o/mV)
FLL Output Transfer (| Vout/ Vin| in mV/mV)

Warm Cold
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v

Total RMS

RMS (100kHz - 850kHz)
RMS (850kHz - 1.2MHz
RMS (1.2MHz - 3.5MHz
SQUID Temperature

2018-07-13 2018-07-20

2018-07-27

2018-08-03

(o0]
9
(9]

(O]
hudk
>
]
©
—
(]
o
&
(O]
|_
)
-]
o
wn

(o0}
(%2
o

2018-08-10

Nothing obvious..



ABRACADABRA-10 cm Data
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Building Simulations in COMSOL

» Geometric factor encodes the flux
through the pickup loop due to the
integrated effective current

» Use COMSOL simulations to calculate
the coupling to the axion field (and
confirm calibration coupling)

» Simulation of ABRACADABRA-10 ’
cm geometry |

» Material properties need to be
measured in the future

%\ D 31st Rencontres de Blois, Particle Physics and Cosmology, June 2-7, 2019
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Data
—— T'Spae = 2470

— Best Fit \\'//1,) Axion

Scan the range 100 kHz - 3 MHz

Fit the 10 MS/s spectrum down to
~200 kHz and the 1 MS/s below

Time resolution of 800s (10 MS/s) | Froquency [Hz] i o
and 1600s (1 MS/s)

~50M frequency points across
~3000 spectra to search (can be
parallelized)

p—
DO

We see movement of the
background by ~20% (40% in
these pea ks) | 400 600 1000

Frequency [kHz]

Normalized Background
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At a single frequency, the signal
flux can be given by 55 o Jayy Bmax9v V Q\/pDMm

vLr

Constant SNR as long as noise
floor set by thermal noise in
pickup loop circuit

Scan speed set by how low the
noise floor can be pushed

= Pushing beyond the SQL

AR




Direct Dark
Matter Searches
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