Search for neutrinoless double beta decay with GERDA

Ann-Kathrin Schütz On behalf the GERDA collaboration

31st Rencontres de Blois Particle Physics and Cosmology France, 4 June 2019

Neutrinoless Double Beta Decay

- process beyond SM
- lepton number violating $\Delta L = 2$
- in principle all 2vBB isotopes are candidates
- majorana mass component
- massive neutrino exchange
- constraints on lightest mass eigenstate
- neutrino mass hierarchy

Search for 0vBB of ⁷⁶Ge:

 $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2\text{e}^{-}$

 $\Rightarrow \Delta L = 2$

- \Rightarrow beyond Standard Model physics
- \Rightarrow Majorana mass or other L-violating physics

GERDA

Signal and Sensitivity

$$\begin{split} \frac{1}{T_{1/2}} &= G^{0\nu} \left(\frac{g_A^{eff}}{g_A}\right)^2 \left|\mathcal{M}^{0\nu}\right|^2 \frac{\langle m_{\beta\beta}\rangle^2}{m_e^2} \\ &\left< m_{\beta\beta} \right> = \left|\sum_i U_{ei}^2 m_i\right| \\ \end{split}$$
 with background $T_{1/2} \sim \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}}$ background-free $T_{1/2} \sim M \cdot t$

Germanium Detectors

- Q-value of ⁷⁶Ge: Q_{BB}=2039 keV
- High purity Ge detectors (87% ⁷⁶Ge):
 - source=detector
 - \Rightarrow high detection efficiency

∘ ultra radio-pure
 ⇒ no intrinsic U/Th background

- high density
- \Rightarrow 0vBB point like events

• semiconductor $\Rightarrow \Delta E \approx 0.2\%$ at Q_{BB}

• OvBB signature:

point-like energy deposition in detector bulk volume
sharp energy peak at 2039 keV (FWHM = 3-4 keV)

Gerda @ LNGS

Phase II: Final Integration & Upgrade

- Final Integration in Dec 2015
- 40 detectors in 7 strings: 30 enr BEGe (20.0 kg)
- 7 enr semi-coaxial (15.6 kg)
- 3 nat semi-coaxial (7.6 kg)
- \rightarrow 35.6 kg of enr detector mass

Upgrade in Jul 2018

- 3 nat & 1 enr semi-coaxial (replaced)
- + 5 enr inverted coaxial (9.5 kg)
- + new fibres + new central module
 with increased LAr light collection

GERDA

Phase II: Dec 2015 \rightarrow April 2018

- Live time 834.8 d
- Duty cycle 92.9%
- Exposure 53.9 kg·yr

Phase II + July 2018 \rightarrow ongoing

GOAL: exposure of 100 kg·yr

Stability and Energy Resolution

- FWHM @ $Q_{BB} = 2039 \text{ keV}$
- BEGe 3.0(1) keV
- Coax 3.6(1) keV

- Stability monitored online with test pulses, injected every 20 s
- Fluctuations between calibrations < 1 keV

Background Modeling

Bayesian fit of multiple datasets (BEGe, coaxial, multiplicity=2, ⁴⁰K/⁴²K tracking) with Monte Carlo PDFs, screening measurements as priors, before analysis cuts

Background Suppression

Signal-like events (OvBB/ 2vBB events) local energy deposit in single detector

Background events (y events)

coincident energy deposition in more than one detector

→ detector anti-coincindence

Background events (γ events)

deposition in multiple locations (MSE) \rightarrow PSD (analysis of time profile of current signal)

Surface events (α/β events)

energy deposited on or close by the detector contacts \rightarrow PSD (short (p+) or long (n+) current pulse)

Background events (y events)

additional energy deposition in LAr \rightarrow LAr veto

Liquid Argon Veto Cut

- Channel-wise (PMT/SiPM) anticoincidence condition
- Thresholds at ~0.2-0.9 P.E.
- Background at $Q_{\scriptscriptstyle BB}$ reduced by factor 2
- \bullet No reduction of α
- Compton continuum strongly suppressed
- Almost pure 2vBB after LAr cut (97%, 600-1300 keV)
- LAr cut signal acceptance: 97.7(1)%

Pulse Shape Discrimination for BEGe's

"A/E cut "

single parameter based on current amplitude A and event energy E

- low A/E: slow events on n+ electrode, multiple scattering
- high A/E: fast events on p+ electrode (e.g. α's from ²¹⁰Po)
- tuned by 90% DEP acceptance of 2615 keV (signal-like) from calibration data
- 82% of background events rejected at $Q_{\!\scriptscriptstyle BB}$
- \bullet $\gamma\text{-lines}$ suppressed by factor of 6
- 0vBB acceptance (87.6 ± 2.5)%

Ann-Kathrin Schütz (Uni Tübingen)

"ANN cut " artificial neural network

- trained on ²⁰⁸Tl DEP (signal) and ²¹²Bi FEP (bkg)
- acceptance from pulse shape simulations, cross-checked with 2vBB events
- additional α rejection based on (fast) signal rise time, tuned after ANN MSE rejection
- 0vBB acceptance $(84 \pm 5)\% \times (85 \pm 1)\%$

Background Index

Ann-Kathrin Schütz (Uni Tübingen)

Phase I+II - Results (82.4 kg yr)

GERDA

Summary and Outlook

Ann-Kathrin Schütz (Uni Tübingen)

Beyond GERDA

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

new collaboration formed in Oct 2016 (=GERDA + Majorana + new groups)

Goals:

- 1 t enriched Ge
- first phase: 200 kg in existing infrastructure @ LNGS
- reduce background with respect to GERDA
- up to 10²⁷ yr sensitivity in 5 years
- \rightarrow remain background-free
- \rightarrow best discovery potential

sensitivity on $T^{0v}_{1/2}$

easiest but not easy way to see

if V are Majorana-type

mid term: a few 10^{26} yrs ($m_{\beta\beta} \sim 40-100$ meV) long term: a few 10^{27} yrs ($m_{\beta\beta} \sim 10-20$ meV)

(Agostini, Beneto, Detwiler, PRD 96 (2017) 053001 also A. Caldwell et al., PRD 96 (2017) 073001)

high discovery potential for IH and NH $_{\rm v}$ not hierarchy, but $m_{\rm v}$ is important -

∆L ≠ 0

Search for Neutrinoless Double Beta Decay

∆L≠0

			isotope	FWHM [keV]	background [(FWHM t _{isotope} yr) ⁻¹]	3σ discovery sensitivity taken from PRD 96(2017) 053001	
			in FV			$T_{1/2}$ [10 ²⁶ yr]	m_{etaeta} [meV]
Ge detectors	GERDA	Ge	37	3	2		
	Majorana	Ge	26	3	15		
	200 kg LEGEND 1000 kg	Ge	155	3	0,6	8.4	40-73
		Ge	780	3	0.1	45	17-31
liquid noble gas	EXO	Xe	80	88	150		
	nEXO	Xe	4300	58	0.6	41	9-22
loaded liquid scintillator	400 kg	Xe	110	250	100		
	KamLAND 800/1000 kg	Xe	~180	250	40 / 2	1.6 /8	47-108 /21-49
	SNO+	Те	260	190	60	4.8	22-54
cryo bolometers	CUORE	Те	206	5	180/360	0.5	66-164
	_						
		low background essential for discovery potential					