

Non-Standard (Exotic) Hadrons

Rick Van Kooten Indiana University 31st Rencontres de Blois Particle Physics and Cosmology 2 – 7 June 2019

Non-Standard Hadrons

Explore at:

- e^+e^- 2 ~10 GeV
- $p ar{p} ~ \sim q ar{q}$ 1.96 GeV
- pp $\sim g-g$ 7 13 TeV

Non-Standard Hadrons

Explore at:

•
$$e^+e^-$$
 2 - ~10 GeV CDF and DØ at
• $p\bar{p}$ ~ $q - \bar{q}$ 1.96 GeV Production of
• pp ~ $g - g$ 7 - 13 TeV $Y(4260)$ and $Z_c^+(3900)$

Prompt or in decays

Non-Standard Hadrons

Explore at:

Outline

- Non-standard hadron models (quarkonium-like) e.g., Rev.Mod.Phys. 90 (2018) 1, 015003; arXiv:1708.04012 [hep-ph]
- Evidence for $Z_c^+(3900)$ in semi-inclusive *b* decays Phys.Rev. D **98** (2018), 052010; arXiv:1807.00183 [hep-ex]
- Search for prompt production of Y(4260), $Z_c^+(3900)$ arXiv:1906.13704 [hep-ex], submitted to Phys. Rev. D

Non-Standard (Exotic) Hadrons (quarkonium-like)

Strongly Bound

Tetraquark

Hybrid quarkonium, excited gluons •

Weakly Bound

 Hadroncharmonium Mesonic Molecule

X(3872)?

* figures adapted from arXiv:1708.04012 [hep-ph] 3b

Evidence for $\mathbf{Z}^+_{\mathbf{c}}(\mathbf{3900})$ in *b* decays

• Discovered at Belle and BESII in

Phys. Rev. Lett. **110**, 252001 (2013) Phys. Rev. Lett. **110**, 252002 (2013)

 $e^+e^- \to Y(4260)$ $Y(4260) \to Z_c^+(3900)\pi^ Z_c^+(3900) \to J/\psi\pi^+$

- $Z_c^+(3900)$ cannot be a conventional quark-antiquark meson since it is charged and decays via strong interaction to charmonium
- Minimum quark content $c \bar{c} u \bar{d}$; Y(4260) may also be an exotic

Evidence for $Z_c^+(3900)$ in *b* decays

Presence of $Z_c^+(3900)$ in decays of *b* hadron decays unclear

- Not seen by Belle in $\bar{B}^0 \to (J/\psi \pi^+) K^-$
- Not seen by LHCb in $B^0 o (J/\psi \pi^+) \pi^-$

Phys. Rev. D **90**, 012003 (2014)

Phys. Rev. D 90, 112009 (2014)

• May have been seen by BABAR in $B^0
ightarrow J/\psi \pi \pi K$

Phys. Rev. D 73, 011101 (2006)

• Process may be spread over many channels and escape observation in a particular channel; look for it semi-inclusive decays (containing muons from J/ψ decay) of all b hadrons (H_b)

 $H_b \rightarrow Y(4260) + \text{anything}$ $Y(4260) \rightarrow Z_c^+(3900)\pi^ Z_c^+(3900) \rightarrow J/\psi\pi^+$

Evidence for $Z_c^+(3900)$ in *b* decays

- Topology: J/ψ + 2 tracks at a detached vertex; $H_b \rightarrow J/\psi h^+ h^-$
- Single and dimuon triggers
- Vertexing requirements, requirements on vertex detached from primary vertex, pointing, impact parameter requirements on added tracks
- $4.1 < m(J/\psi \pi^+ \pi^-) < 5.0 \text{ GeV}$
 - includes Y(4260) states
 - high enough for $Z_c^+(3900)$
 - low enough to exclude fully reconstructed decays of b hadrons $H_b \rightarrow J/\psi h^+ h^-$

Evidence for $\mathbf{Z}^+_{\mathbf{c}}(\mathbf{3900})$ in *b* decays

• Rate: normalize to B_d^0 $\frac{N(H_b \to (Z_c^+(3900) \to J/\psi\pi^+)\pi^-)}{N(B_d^0 \to J/\psi K^*)} = 0.085 \pm 0.019$

• Belle: did not see significant $Z_c^+(3900)$ signal in $\bar{B}_d^0 \to J/\psi \pi^+ K^-$

Check: also no significant production:

$$\frac{N(H_b \to (Z_c^+(3900) \to J/\psi\pi^+)K^-)}{N(B_d^0 \to J/\psi K^*)} < 0.015 \text{ at } 90\% \text{ C.L.}$$

- Data re-processed with extended track-finding algorithm optimized for reconstructing low-p_T tracks → ~50% larger
- Same channel:

 $\begin{array}{l} Y(4260) + \text{anything} \\ Y(4260) \rightarrow Z_c^+(3900)\pi^- \\ Z_c^+(3900) \rightarrow J/\psi\pi^+ \end{array}$

 $(J/\psi\pi^+)\pi^- + X$ vertex

Split into two exclusive samples:

- consistent with primary vertex
- displaced vertex

- For $4.2 < M(J/\psi\pi^{+}\pi^{-}) < 4.3 \text{ GeV} \sim m(Y(4260))$ Displaced vertex $H_b \to (J/\psi\pi^{+})\pi^{-}X$ $Z_c^{+}(3900)$ signal at 5.4 σ $m = 3902.6 \pm 5.2 \text{ (stat)}_{-1.4}^{+3.3} \text{ (syst) MeV}$ $\Gamma = 32_{-21}^{+28} \text{ (stat)}_{-7}^{+26} \text{ (syst) MeV}$ (consistent with PDG)
- Acceptance of displaced-vertex selection found using $B_d^0 \rightarrow J/\psi K^{\pm} \pi^{\mp}$
- No significant signal in primary vertex sample

State	$N_{ m prompt}/N_{ m non-prompt}$	
$Y(4260) \to Z_c^+(3900)\pi^-$	$-0.08^{+0.3}_{-0.4}$ Small	$_{5}^{6}$ < 0.66 at 95% C.L. compared to:
X(3872) [1]	~ 2.5	Large prompt production rate often used as argument against it as
X(4140) [2]	~ 1.5	weakly bound charm-meson molecule e.g., arXiv:1811.08876 [hep-ph]

[1] CMS, JHEP **04**, 154 (2013)[2] ATLAS, JHEP **01**, 117 (2017)

Summary/Conclusion

- Tevatron continues modest contribution in studies of non-standard (exotic) hadrons
- Properties of states including production in $p\bar{p}~(\sim q\bar{q})$ at 1.96 TeV and in *b* hadron decays
- $Y(4260), Z_c^+(3900)$ observed in semi-inclusive *b* hadron decays (although not in $\bar{B}_d^0 \to J/\psi \pi^+ K^-$)
- Y(4260), Z⁺_c(3900) observed in prompt production but at relatively smaller rate than other non-standard states – more likely meson molecular states?