### Colors of QCD: Hadron spectroscopy and exotic states at LHCb

Mikhail Mikhasenko on behalf of LHCb Collaboration

CERN, Switzerland

June 5th 2019

Perspective of QCD – large white space with little colorful objects



Perspective of QCD - large white space with little colorful objects

simple hadrons (baryons, mesons)





hardonic molecules (atoms)



### Search for the new type of matter

How to search for color physics with colorless environment?



modification of a plot from [INT. J. MOD. PHYS. A 30, 1530022]

Several stories to tell Run-II data, just-released results





(3) Near-threshold  $D\overline{D}$  spectroscopy

# Excitation of the double-heavy double-flavor meson $B_c$



### Double-flavor meson $B_c$ and its excitations

### $B_c$ spectroscopy

- (CDF1998) first observation of  $B_c$
- (ATLAS2014) first observation of excited  $B_c(2S)$
- (CMS2019) resolving two radial-excited states,  $(\uparrow\downarrow)^*$  and  $(\uparrow\uparrow)^*$
- (LHCb2019) confirmation of two states





- Clean  $B_c$  sample, 3785  $\pm$  73 ev.
- Large combinatorial background



### Double-flavor meson $B_c$ and its excitations

### $B_c$ spectroscopy

- (CDF1998) first observation of  $B_c$
- (ATLAS2014) first observation of excited  $B_c(2S)$
- (CMS2019) resolving two radial-excited states,  $(\uparrow\downarrow)^*$  and  $(\uparrow\uparrow)^*$
- (LHCb2019) confirmation of two states





- Clean  $B_c$  sample, 3785  $\pm$  73 ev.
- Large combinatorial background



### Double-flavor meson $B_c$ and its excitations

### $B_c$ spectroscopy

- (CDF1998) first observation of  $B_c$
- (ATLAS2014) first observation of excited  $B_c(2S)$
- (CMS2019) resolving two radial-excited states,  $(\uparrow\downarrow)^*$  and  $(\uparrow\uparrow)^*$
- (LHCb2019) confirmation of two states



- Clean  $B_c$  sample, 3785  $\pm$  73 ev.
- Large combinatorial background





Candidates / (3 MeV/ $c^2$ )

# Pentaquark states $P_c$

Hadronic molecules





### Almost-stable hadrons

Lifetime measurements of  $\Lambda_b^0$  and  $B^0$ 

• identification of displaced vertex



• similar decay chains



### Almost-stable hadrons

Lifetime measurements of  $\Lambda_b^0$  and  $B^0$ 





Mikhail Mikhasenko (CERN)

### Adding more data with Run-II (2017,2018)

#### [arXiv:1904.03947]



### Adding more data with Run-II (2017,2018)

#### [arXiv:1904.03947]



#### Gain in statistics $\times 9$

 $26k \text{ events} \Rightarrow 246k \text{ events}$ 

- Luminosity:  $3 \text{ fb}^{-1} \oplus 6 \text{ fb}^{-1}$ ,
- Cross section  $\times 2$ : 7 TeV $\rightarrow$  13 TeV,
- Selection efficiency ×2.

### Amplitude Analysis

- same AA gives consistent results,
- but unacceptable quality.
  - Narrow peaks in  $J/\psi p$
  - Lineshape of  $\Lambda$ .

### Adding more data with Run-II (2017,2018)

#### [arXiv:1904.03947]



#### Gain in statistics $\times 9$

#### $26k \text{ events} \Rightarrow 246k \text{ events}$

- Luminosity:  $3 \text{ fb}^{-1} \oplus 6 \text{ fb}^{-1}$ ,
- Cross section ×2:  $7 \text{ TeV} \rightarrow 13 \text{ TeV}.$
- Selection efficiency ×2.

### Amplitude Analysis

- same AA gives consistent results.
- but unacceptable quality.
  - Narrow peaks in  $J/\psi p$
  - Lineshape of  $\Lambda$ .



#### New features

- Peak at 4.312 GeV becomes significant
- Peak at 4.457 GeV got resolved in two!

### Extracting resonance properties [arXiv:1904.03947]

- 1-dim. fit and extensive systematic studies:
  - Three different projection methods
  - Several background parametrization
  - Interference effects
  - Procedure is validated using 6-dim. MC





### Plausible interpretation of $P_c$ states

#### [arXiv:1904.03947]



### Plausible interpretation of $P_c$ states

[arXiv:1904.03947]



 $\Sigma_c \overline{D}$  hadronic molecules

- Narrow width
  - Problematic in tightly-bound picture
  - Problematic in the rescattering picture
- Number of states (HQSS):

 $\begin{array}{lll} \Sigma_c^+ \overline{D}{}^0 & 1/2^+ \otimes 0^- \xrightarrow{S-\text{wave}} & J^P : 1/2^- \\ \Sigma_c^+ \overline{D}{}^{*0} & 1/2^+ \otimes 1^- \xrightarrow{S-\text{wave}} & J^P : 1/2^- \oplus 3/2^- \\ \Sigma_c^{*+} \overline{D}{}^{*0} & 3/2^+ \otimes 1^- \xrightarrow{S-\text{wave}} & J^P : 1/2^- \oplus 3/2^- \oplus 5/2^- \end{array}$ 

Many theoretical predictions of  $\Sigma_c D$  binding published before 2015 (see backup).



• Ampl.-Ana. is needed to check  $J^P$ .

# New narrow charmonium state X(3842)



 $D\overline{D}$  spectrum with 9 fb<sup>-1</sup> (Run-I+Run-II)

[arXiv:1903.12240]



- displaced vertices
- 80 90% purity



 $D\overline{D}$  spectrum with 9 fb<sup>-1</sup> (Run-I+Run-II)

[arXiv:1903.12240]



New state is consistent with  $1^3 D_3$  ( $\psi_3(1D)$ ),  $J^{PC} = 3^{--}$ .

### Conclusion

Exciting news on the color physics from LHCb:

- Confirmation of the  $B_c(2S)$  and  $B_c^*(2S)$  states,
- Groundbreaking update on pentaquarks,
- Amazing  $D\overline{D}$  spectrum with new charmonium state,  $\psi_3(3842)$ .

### Conclusion

Exciting news on the color physics from LHCb:

- Confirmation of the  $B_c(2S)$  and  $B_c^*(2S)$  states,
- Groundbreaking update on pentaquarks,
- Amazing  $D\overline{D}$  spectrum with new charmonium state,  $\psi_3(3842)$ .

Not shown:

- new decay channel of  $\Xi_{cc}, \ \Xi_{cc} 
  ightarrow \pi^+ \Xi_c$
- first observation of the  $\Lambda_b 
  ightarrow \Lambda\gamma$
- Observation of  $B^0_{(s)} \rightarrow J/\psi p\bar{p}$
- Observation of  $\Xi_c \rightarrow \phi p$
- Many more, see complete list [here].



## Thank you for the attention

backup slides follow...

### Impact of new measurements on charmonium



Impact of new  $D\overline{D}$  spectrum

#### Great interest in community

•  $\psi_3(3842)$  is just seen on lattice, [arXiv:1905.03506v1]

### *B<sub>c</sub>* spectrum in relativistic quark model [St. Godfrey PRD 70 054017 (2004)]



### $P_c$ interpretations

- $\Sigma_c D$  binding (published before 2015)
  - ▶ W. L. Wang et al., Phys. Rev. C84 (2011) 015203
  - Z.-C. Yang et al., Chin. Phys. C36 (2012) 6
  - ▶ J.-J. Wu et al., Phys. Rev. C85 (2012) 044002,
- Dynamically generated (see references in arXiv:1904.03947)
- Heavy-quark-spin-symmetry (HQSS) consequences
  - Ming-Zhu Liu et al., arXiv:1903.11560
  - C.W. Xiao et al., arXiv:1904.01296
- $P_c(4312)$  pole position and molecular binding,
  - C. Fernandez, A. Pilloni, MM (JPAC Collaboration), arXiv:1904.10021.
- Tightly-bound pentaquark models (see references in arXiv:1904.03947)

### Rescattering interpretation

Triangle singularity [see Appendix of arXiv:1904.03947]

- There are many thresholds around  $P_c$  peaks
  - ∧<sub>c</sub>D̄<sup>0</sup>, Σ<sub>c</sub>D̄<sup>0</sup>, χ<sub>c</sub> N\* with different exchanges as suggested in [Guo et al.(PRD92 (2015) 071502), U.-G. Meißner et al. (PLB751 (2015) 59), X.-H. Liu et al. (PLB757 (2016) 231), MM (arXiv:1507.06552)]
- An appropriate Triangle Singularity can be found for all peaks
- BUT, as soon as **width** of exchange particle is taken into account





### Investigation on molecular picture

[C. Fernandez, A. Pilloni, MM, et al (JPAC Collaboration), arXiv:1904.10021]



Scattering-length approximation

$$T_{ij}^{-1} = m_{ij} - ik_i \delta_{ij},$$
$$k_i = \sqrt{s - s_i}$$

Two channels:  $\Sigma_c^+ ar{D}^0$  and  $J/\psi p$ .

#### Intensity

$$I(s) = \rho(s)(|T_{11}(s) p(s)|^2 + b(s)),$$

- p(s) and b(s) are the first order polynomials.
- $\rho(s)$  is a phase-space factor.

