Vector boson + jet production at forward rapidities

Duncan M. Walker June 5, 2019

NNLOJET collaboration IPPP, Durham University 31st Rencontres de Blois

Motivation

- Precision test of pQCD
 - \hookrightarrow Forward region challenging:
 - \hookrightarrow Numerics, power corrections
- PDF constraints
 - \hookrightarrow Large source of theory
 - uncertainty

- Detector calibration
 → jet energy scale
- BSM searches
 - $\hookrightarrow \mathsf{monojet}$

Antenna Subtraction @ NNLO

Antenna Subtraction @ NNLO

 X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, M. Höfer, A. Huss, I. Majer, J. Mo, T. Morgan, J. Niehues, J. Pires, DMW, J. Whitehead

Processes available with antenna subtraction (+ p2B, Q_T):

pp ightarrow V		@NNLO	pp ightarrow H		@N ³ LO
pp ightarrow V+j		@NNLO	pp ightarrow H+j		@NNLO
$\hookrightarrow V o II$,	$V \in [W^{\pm}]$	$[,Z/\gamma^*]$	pp ightarrow H+2j	(VBF)	@NNLO
$\it pp ightarrow$ jets		@NNLO	$\hookrightarrow H o \gamma \gamma$, $ au au$, $V \gamma$, $V V$		
\hookrightarrow inclusive, dijet			$\it pp ightarrow VH$		@NNLO
$pp ightarrow \gamma + j$		@NNLO	$\hookrightarrow H \to bl$	Ь	
$pp ightarrow \gamma\gamma$		@NNLO	$e^+e^- ightarrow 3j$		@NNLO
$en \rightarrow 1i$	(NC CC)		an > 2i	(NC CC)	

Overview

Consider two sets of combined $\mathsf{V}+\mathsf{jet}$ data:

- LHCb $\sqrt{s} = 8 \text{ TeV}$ [hep-ex/1605.00951]
 - Separate Z, W^+ and W^- distributions
 - W^{\pm} ratios/asymmetry
 - $\sim 2 < \eta < 4.5$
- ATLAS $\sqrt{s} = 7$ TeV
 - W + jet distributions [hep-ex/1409.8639]
 - Z + jet distributions [hep-ex/1304.7098]
 - *W*/*Z* ratios [hep-ex/1408.6510]
 - $\bullet ~\sim |\eta| < 4.4$

Idea: Use NNLOJET calculation to push NNLO V + jet to high η/y for the first time \rightarrow PDFs at high Bjorken x, flavour sensitivity

Full results: hep-ph/1901.11041, EPJC XXXX

[A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss, DMW]

Kinematic Coverage [LO]

Allows us to probe forward regions \leftrightarrow high x_1 , low x_2

$$x_{1,2} \ge rac{1}{\sqrt{s}} (m_T^V e^{\pm y^V} + p_T^j e^{\pm y^j})$$

LHCb @ 8 TeV

Overall selection:

$$\begin{split} p_{\mathcal{T}}^{\,\rm jet} &> 20 \,\, {\rm GeV}, \qquad 2.2 < \eta^{\rm jet} < 4.2, \qquad \Delta R_{\mu,\rm jet} > 0.5, \\ p_{\mathcal{T}}{}^{\mu} &> 20 \,\, {\rm GeV}, \qquad 2 < y^{\mu} < 4.5 \end{split}$$

Process specific cuts:

$$egin{array}{lll} W^{\pm}: & p_{\mathcal{T}}{}^{\mu+ ext{jet}} > 20 \,\, ext{GeV} \ Z: & ext{60 GeV} < m_{\mu\mu} < 120 \,\, ext{GeV} \end{array}$$

LHCb Charge Asymmetry

Scale uncertainties: Decorrelate μ_R , μ_F between numerator/denominator by a maximum factor of 2 between any scale pair \rightarrow 31pt variation

NNPDF3.1_nnlo @ $\alpha_{S} = 0.118$

- Asymmetry probes (u d) valence quark PDFs
- Most forward bin: $x_1\gtrsim 0.1$, $x_2\gtrsim 5 imes 10^{-5}$
- Overshoot in asymmetry $\leftrightarrow u$ overestimate, d underestimate

LHCb Charge Asymmetry

- NLO + k-factor reconstruction for PDF variation
- Large variation between PDF sets \rightarrow sensitivity!

Valence Quark PDFs

- At high-x, d valence contribution drives difference between PDF sets
- Current constraints on u/d primarily from DØ lepton charge asymmetry data + fixed target experiments

Valence Quark PDFs

- At high-x, d valence contribution drives difference between PDF sets
- Current constraints on u/d primarily from DØ lepton charge asymmetry data + fixed target experiments

LHCb Jet p_T Distributions

Universal overestimate at high x W(Z)J lowest bin: $x_1 \gtrsim 0.04(0.08),$ $x_2 \gtrsim 5 \times 10^{-5}(1 \times 10^{-4})$ W(Z)J highest bin: $x_1 \gtrsim 0.08(0.11),$ $x_2 \gtrsim 1.1 \times 10^{-4}(2 \times 10^{-2})$

ATLAS @ 7 TeV

Overall selection:

$$p_T^{\text{jet}} > 30 \text{ GeV}, \qquad |y^{\text{jet}}| < 4.4, \qquad \Delta R_{\mu,\text{jet}} > 0.5,$$

 $p_T^{\ l} > 25 \text{ GeV}, \qquad |y^{\ l}| < 2.5$

Process specific cuts:

$$egin{aligned} W^{\pm} : & E_T^{ ext{miss}} > 25 \,\, ext{GeV} \ m_T^W > 40 \,\, ext{GeV} \ Z : & ext{60 GeV} < m_{\mu\mu} < 116 \,\, ext{GeV} \ \Delta R_\ell > 0.2 \end{aligned}$$

ATLAS Jet p_T Ratios

Global overestimate in both inclusive (right) and exclusive (left)

$$rac{\sigma^{WJ}}{\sigma^{ZJ}}\sim rac{ug+dg}{0.29ug+0.37dg},$$
 consistent with harder d quark distribution

ATLAS Exclusive/Inclusive

- Quantify description of jet multiplicities > 1 using ratio $(N \ge 1)/(N = 1)$
- Reasonable agreement, capture dominant behaviours
- W, Z emission structure \sim identical

ATLAS Jet Rapidity Distributions

- Forwardmost bin: $x_1\gtrsim 0.19$, $x_2\gtrsim 1.5 imes 10^{-4}$
- Combined $W^\pm \to$ lose some flavour sensitivity

- Now able to access V + jet @ NNLO in forward ($\eta>$ 3) regions
- Natural use is for inclusion of data in NNLO PDF fits to constrain high-x contributions
- Charge asymmetry → valence quark constraints
 → LHCb data is particularly sensitive to *d* valence distributions

Backup slides

Scale Variation Envelopes

Distributions:

$$d\sigma(\mu_F,\mu_R), \quad rac{1}{2} \leq \mu/\mu' \leq 2, \quad \mu,\,\mu' \in [\mu_R,\mu_F]$$

Ratios:

$$\frac{d\sigma^{\mathsf{a}}(\mu_{\mathsf{F}},\mu_{\mathsf{R}})}{d\sigma^{\mathsf{b}}(\tilde{\mu}_{\mathsf{f}},\tilde{\mu}_{\mathsf{R}})}, \quad \frac{1}{2} \leq \mu/\mu' \leq 2, \quad \mu, \, \mu' \in [\mu_{\mathsf{R}},\tilde{\mu}_{\mathsf{R}},\mu_{\mathsf{F}},\tilde{\mu}_{\mathsf{F}}]$$

Asymmetries:

$$\frac{\left[d\sigma^{W^+} - d\sigma^{W^-}\right](\mu_F, \mu_R)}{\left[d\sigma^{W^+} + d\sigma^{W^-}\right](\tilde{\mu}_f, \tilde{\mu}_R)}, \quad \frac{1}{2} \le \mu/\mu' \le 2, \quad \mu, \, \mu' \in [\mu_R, \tilde{\mu}_R, \mu_F, \tilde{\mu}_F]$$

LHCb Charge Asymmetry

Fully Correlated scale uncertainties