Multi-boson Production at 13TeV in ATLAS and CMS

- WW, WZ and ZZ
- WWW and WVZ

Tiesheng Dai

The University of Michigan

On behalf of the ATLAS and CMS Collaborations

31st Rencontres de Blois on "Particle Physics and Cosmology"

Blois, Loire Valley; France, Jun. 2-7 2019

Multi-boson Physics

Physics Processes:

- Diboson Wγ, Zγ, WW, WZ, ZZ productions, probing aTGC
- EWK Vector Boson Fusion (VBF) and Vector Boson Scattering (VBS), Wγjj, Zγjj, WWjj, WZjj – probing Higgs mech. and aQGCs (Covered by other talks)
- Tri-boson productions, probing aQGCs

Motivations:

- EWK precision measurements with higher order corrections
- Test pQCD
- Explore new final states never observed before
- Searching for SM breakdown

 new physics beyond SM

- □ Signature: two high-pt eµ with large MET
- ☐ Backgrounds: Top (ttbar, Wt), Z+jets, Other Diboson, W+jets
- \square Selection: eµ final state, veto jet (pT > 35 GeV) and b-jets

1st differential diboson measurement at 13TeV on $p_T(\ell 1)$, $p_T(e\mu)$, $m_{e\mu}$, $|y_{e\mu}|$, $\Delta \varphi_{e\mu}$, $|\cos \theta^*| = \tanh(\Delta \eta_{e\mu}/2)|$

Normalized fiducial cross sections

EFT aTGC limits from $p_T(\ell 1)$

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i$$

arXiv:1205.4231

Unfolded fiducial cross sections

Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV-2]
c_{WWW}/Λ^2	[-3.4 , 3.3]	[-3.0, 3.0]
c_W/Λ^2	[-7.4 , 4.1]	[-6.4, 5.1]
c_B/Λ^2	[-21, 18]	[-18, 17]
$c_{\tilde{W}WW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1.5]
$c_{\tilde{W}}/\Lambda^2$	[-76 , 76]	[-91,91]

DPS W±W± → &±v&±v

CMS-PAS-SMP-18-015

Motivations:

- To probe the factorization approach used in MC simulation

$$\sigma_{\mathrm{AB}}^{\mathrm{DPS}} = \frac{n}{2} \frac{\sigma_{\mathrm{A}} \sigma_{\mathrm{B}}}{\sigma_{\mathrm{eff}}}$$

- A,B are SHS (Single Hard Scattering) processes
- n=1 (A,B identical) n=2 (A,B distinguishable processes)
- Background for new physics searches

Selections:

- 2 same-sign leptons + Missing transverse energy (MET)
- 0/1 jet only (no jets at LO, 10% of signal have 1 jet)
- veto b-tagged jets
- Signal extracted using multivariate analysis techniques

Results:

- 1st evidence of DPS WW with 13TeV data (2016-2017)
- Sensitivity: 3.9σ

$$\sigma_{\text{DSPWW,obs}}$$
 = 1.41 \pm 0.28 (stat) \pm 0.28 (syst) pb

The measurement lies in between the predictions of PYTHIA8 1.92 pb and the factorization approach 0.87 pb

WZ Production

JHEP 04 (2019) 122

ATLAS arXiv:1902.05759

- WZ → ℓ'vℓℓ selection:
 - 3 lepton (e, μ) consistent with MET
 - one opposite sign same flavor 2ℓ compatible with m₇
- Fake background measured from data;

 $\sigma_{TOT}(pp \rightarrow WZ)$ extrapolated from fiducial cross section:

CMS 48.09
$$^{+1.00}_{-0.96}$$
 (stat) $^{+0.44}_{-0.37}$ (theo) $^{+2.39}_{-2.17}$ (syst) \pm 1.39 (lumi) pb.

ATLAS $51.0 \pm 0.8 \, (\text{stat.}) \pm 1.8 \, (\text{exp. syst.}) \pm 0.9 \, (\text{mod. syst.}) \pm 1.1 \, (\text{lumi.}) \, \text{pb},$

MATRIX
$$\sigma_{NNLO}(pp \rightarrow WZ) = 49.98^{+2.2\%}_{-2.0\%} \text{ pb} \frac{\text{arXiv:1711.06631}}{\text{arXiv:1711.06631}}$$

Charge-dependent measurements:

$$\frac{\sigma_{W^+Z\to\ell'\nu\ell\ell}^{\text{fid.}}}{\sigma_{W^-Z\to\ell'\nu\ell\ell}^{\text{fid.}}} = 1.47 \pm 0.05 \text{ (stat.)} \pm 0.02 \text{ (syst.)}$$

CMS
$$A_{\rm WZ}^{+-} = \frac{\sigma_{\rm tot}({\rm pp} \to {\rm W}^+ {\rm Z})}{\sigma_{\rm tot}({\rm pp} \to {\rm W}^- {\rm Z})} = 1.48 \pm 0.06 \, ({\rm stat}) \pm 0.02 \, ({\rm syst}) \pm 0.01 \, ({\rm theo})$$

WZ Differential Cross-sections

CMS JHEP 04 (2019) 122 ATLAS <u>arXiv:1902.05759</u>

Still statistical uncertainties dominate

WZ Polarization

ATLAS arXiv:1902.05759

$$\frac{1}{\sigma_{W^{\pm}Z}} \frac{\mathrm{d}\sigma_{W^{\pm}Z}}{\mathrm{d}\cos\theta_{\ell,W}} = \frac{3}{8} f_{\mathrm{L}} [(1 \mp \cos\theta_{\ell,W})^{2}] + \frac{3}{8} f_{\mathrm{R}} [(1 \pm \cos\theta_{\ell,W})^{2}] + \frac{3}{4} f_{0} \sin^{2}\theta_{\ell,W}$$

Measurements: extract polarization f_0 (longitudinal) and $f_L - f_R$ (transverse) by fit of $q_e \cdot \cos\theta(\ell, W)$ and $\cos\theta(\ell, Z)$

1	fo	Measured	SM (NLO QCD)	Significance	Expected
\	W	0.26 ± 0.06	0.238 ± 0.003	4.2σ	3.8σ
	Z	0.24 ± 0.24	0.230 ± 0.003	6.5σ	6.1σ

Still room to improve with more data and better MC

WZ aTGC Limits

CMS arXiv:1901.03428

$$\delta\mathcal{L}_{AC} = \frac{c_{WWW}}{\Lambda^2} \text{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] + \frac{c_W}{\Lambda^2} \left(D_{\mu}H\right)^{\dagger}W^{\mu\nu} \left(D_{\nu}H\right) + \frac{c_b}{\Lambda^2} \left(D_{\mu}H\right)^{\dagger}B^{\mu\nu} \left(D_{\nu}H\right)$$

EFT: 6 dimensionless coefficients (ci) parametrize the strength with which new physics couples to SM particles

aTGC limits by max. likelihood fit on M(WZ)

Parameter	95% CI (expected) [TeV^{-2}]	95% CI (observed) [TeV^{-2}]
c_W/Λ^2	[-3.3, 2.0]	[-4.1, 1.1]
$c_{\rm WWW}/\Lambda^2$	[-1.8, 1.9]	[-2.0, 2.1]
$c_{\rm b}/\Lambda^2$	[-130, 170]	[-100, 160]

Most stringent limits on **c**_w

ZZ → 4ℓ Production

CMS <u>CMS-PAS-SMP-19-001</u> ATLAS arXiv:1902.05892

- ZZ →ℓℓℓ′ℓ′:
 - Smallest cross-section, but cleanest signature almost no BKGs
 - 4 lepton (e,μ) consistent with two Zs:
- Fake background measured from data.

CMS: 137fb⁻¹, most precise diboson measurement

 $\sigma_{tot}(\mathrm{pp} o \mathrm{ZZ}) =$ 17.1 \pm 0.3 (stat) \pm 0.4 (syst) \pm 0.4 (theo) \pm 0.3 (lumi) pb

- Experimental error down to 3.4%
- Dominant experiment uncertainty : lepton ID
- Good agreement with MATRIX NNLO prediction and compatible with MCFM NLO calculation

ATLAS : 36.1fb⁻¹, gg \rightarrow 4l signal strength ($\mu_{gg\rightarrow 4l}$) by a likelihood scan in the range m_{4l} ~ [180, 1200] GeV

Generator	Observed μ _{gg→4l}	Predicted $\mu_{gg \rightarrow 4l}$
Sherpa 2.2.2 with K-factor	1.3 ± 0.5	1.0 ± 0.4
MCFM, LO QCD	2.7 ± 0.9	2.2 ± 0.9

ZZ → 4ℓ Differential Cross-section in Association with Jets @8/13TeV

CMS Phys. Lett. B 789 (2019) 19

- Measured different cross-section with at least one or 2 jets against 2 leading jet pT, pseudorapidity and their invariant mass;
- Measurements and theoretical predictions are in good agreement within the theoretical and experimental uncertainties.

ZZ* → 4ℓ Differential Measurements

ATLAS arXiv:1902.05892

☐ Unfolded distributions, double differential in p₁(4ℓ), |y_{4ℓ}|, and ℓ flavor

- □ 4l resonance searches \rightarrow Br(Z \rightarrow 4l) measurement
 - Lowest m(4l) bin [75, 100] GeV
 - All the uncertainties are treated uncorrelated.

Measurement	$\mathcal{B}_{Z\to4\ell}/10^{-6}$
ATLAS, $\sqrt{s} = 7$ TeV and 8 TeV [8]	$4.31 \pm 0.34 (stat) \pm 0.17 (syst)$
CMS, $\sqrt{s} = 13 \text{ TeV } [6]$	$4.83^{+0.23}_{-0.22}(\text{stat})^{+0.32}_{-0.29}(\text{syst})\pm0.08(\text{theo})\pm0.12(\text{lumi})$
$ATLAS, \sqrt{s} = 13 \text{ TeV}$	$4.70 \pm 0.32 ({ m stat}) \pm 0.21 ({ m syst}) \pm 0.14 ({ m lumi})$

- BSM Higgs couplings to top or gluons?
- Measured at $m_{4e} > 180$ GeV, where c_t and c_g decouple (arXiv:1406.6338)

ZZ → 2€2v

Fit E_T^{miss} distribution to obtain total cross-section

		Measured	Predicted
	ee	$12.2 \pm 1.0 \text{ (stat)} \pm 0.5 \text{ (syst)} \pm 0.3 \text{ (lumi)}$	11.2 ± 0.6
$\sigma_{ZZ\to\ell\ell\nu\nu}^{\mathrm{fid}}$ [fb]	$\mu\mu$	$13.3 \pm 1.0 \; (\mathrm{stat}) \pm 0.5 \; (\mathrm{syst}) \pm 0.3 \; (\mathrm{lumi})$	11.2 ± 0.6
	$ee + \mu\mu$	$25.4 \pm 1.4 \; (\mathrm{stat}) \pm 0.9 \; (\mathrm{syst}) \pm 0.5 \; (\mathrm{lumi})$	22.4 ± 1.3
$\sigma_{ZZ}^{ m tot}$ [pb]	Total	$17.8 \pm 1.0 \text{ (stat)} \pm 0.7 \text{ (syst)} \pm 0.4 \text{ (lumi)}$	15.7 ± 0.7

Measured the fiducial region differential cross-sections on $m_{T}^{ZZ}, \ p_{T}^{\ell\ell}, p_{T}^{\ell 1}, y_{\ell\ell}, \Delta\phi_{\ell\ell}, N_{jets} \ and \ p_{T}^{jet1}$

Fit unfolded measured distribution of p_Tℓℓ above 150 GeV to obtain more stringent aTGC limits than ones from ZZ→4ℓ

	f_4^{γ}	$f_4^{ m Z}$	f_5^{γ}	$f_5^{ m Z}$
Expected $[\times 10^{-3}]$	[-1.3, 1.3]	[-1.1, 1.1]	[-1.3, 1.3]	[-1.1, 1.1]
Observed $[\times 10^{-3}]$	[-1.2, 1.2]	[-1.0, 1.0]	[-1.2, 1.2]	[-1.0, 1.0]

Triboson Production

WVV Analysis Strategy

WWW Analysis

Cutflow Based

WVZ Analysis

BDT Based

WWW

Avoid Z bosons:

282j Analysis - Two same sign leptons 3€ Analysis - 0 same flav. opposite sign lep.

2₂i Analysis

- At least 2 jets with b-jet veto.
 - Mjj is used as the discriminant
- Specific cuts to veto ssWW

3^e Analysis

- OSFOS suppresses majority of backgrounds.
- b-jet veto is additionally applied to veto ttbar events.

Categorize according to 3^e Always reconstruct a or 4ℓ end-states

3^e Analysis

- At least one jet with b-jet veto.
- One BDT is trained per jet category:
 - 1, 2, 3+ jets.

4^e Analysis

- 4 leptons with a total charge of 0
- One BDT is trained for each category:
 - Same-flavor on-shell
 - Same-flavor off-shell
 - Different-flavor
- Used both data-driven and MC-based background estimates with control regions
- CMS focus on WWW analysis

WWW Production

9 signal regions

- 6 from 2e of same sign, m_{jj}-in consistent as W and m_{jj}-out for other selected events
- > 3 regions from events with 3&
- Measurements:

$$\sigma(pp \to W^{\pm}W^{\pm}W^{\mp}) = 0.17^{+0.32}_{-0.17} \, pb$$

The best fit of signal strength: $0.34^{+0.62}_{-0.34}$

aQGC limits on 3 most sensitive couplings in the absence of any indication for anomalous couplings

Anomalous coupling	Allowed range (TeV^{-4})	
	Expected	Observed
$f_{\mathrm{T,0}}/\Lambda^4$	[-1.3, 1.3]	[-1.2, 1.2]
$f_{\mathrm{T,1}}/\Lambda^4$	[-3.7, 3.7]	[-3.3, 3.3]
$f_{\mathrm{T,2}}/\Lambda^4$	[-3.0, 2.9]	[-2.7, 2.6]

CMS arXiv:1905.04246

Explore BSM physics based on photophobic axion-like model (ALP: arXiv:1805.06538) pp \rightarrow W a (a \rightarrow WW) \rightarrow WWW

ATLAS arXiv:1903.1041

WVV Evidences

Comment: most measurements are shown in 4 grouped regions

WVV Production

12 region distributions after fit (DF=Different & Flavor, SF=Same & Flavor)

* First evidence of VVV production in pp events has been observed with a significance of 4 σ compared to expected 3.1 σ

* WVV cross-section measurements, consistent with SM predictions

$$\sigma_{WWW} = 0.68^{+0.16}_{-0.15} \text{ (stat.)} ^{+0.16}_{-0.15} \text{ (syst.)} \text{ pb}$$

$$\sigma_{WWZ} = 0.49 \pm 0.14 \text{ (stat.)} ^{+0.14}_{-0.13} \text{ (syst.)} \text{ pb}$$

ATLAS arXiv:1903.1041

Decay channel	Significance		
Decay channel	Observed	Expected	
WWW combined	3.3σ	2.4σ	
$WWW \to \ell \nu \ell \nu qq$	4.3σ	1.7σ	
$WWW \rightarrow \ell \nu \ell \nu \ell \nu$	1.0σ	2.0σ	
WVZ combined	2.9σ	2.0σ	
$WVZ o \ell \nu qq\ell\ell$	_	1.0σ	
$WVZ ightarrow \ell u \ell u \ell \ell / q q \ell \ell \ell \ell$	3.5σ	1.8σ	
VVV combined	4.0σ	3.1σ	

Conclusion

- Improved measurements@13TeV agree with SM predictions (NNLO QCD)
- 1st evidence of triple boson product at 4σ
- Explored aTGC with good sensitivities.

Backup

ATLAS SM Cross-section Results

Standard Model Total Production Cross Section Measurements Status: March 2019

