

ATLAS measurements of Vector Boson Scattering

Narei Lorenzo Martinez (LAPP-Annecy, France), on behalf of the ATLAS collaboration

June 4th, 2019 - Rencontre de Blois 2019

Introduction

- Vector boson scattering (VBS) processes have the smallest cross-section that can be measured currently
- Important test of electroweak (EW) sector and EW Symmetry Breaking (unitarisation by Higgs boson)

ATI AC D

ATLAS Exotice Searches* - 95% CL Upper Exclusion Limits

~		ocarciic		30/				AIL	
Sta	atus: March 2019						$\int \mathcal{L} dt = (3$	3.2 – 139) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ TeV}$
	Model	ί,γ	Jets†	E_{T}^{miss}	∫£dt[ft	b ⁻¹] Limit	<u> </u>		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } \mathcal{G}_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD QH} \\ \text{ADD QH high } \Sigma \rho_T \\ \text{ADD BH high } \Sigma \rho_T \\ \text{ADD BH multijet} \\ \text{RS1} \mathcal{G}_{KK} \to \gamma\gamma \\ \text{Bulk RS} \mathcal{G}_{KK} \to WW/ZZ \\ \text{Bulk RS} \mathcal{G}_{KK} \to WW/ZZ \\ \text{Bulk RS} \mathcal{G}_{KK} \to tt \\ \text{2UED / RPP} \end{array}$	$\begin{array}{c} 0 \ e,\mu \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ multi-channel \\ \rightarrow \ qqqq \ 0 \ e,\mu \\ 1 \ e,\mu \\ 2 \ e,\mu \end{array}$	1 - 4j -2j $\ge 2j$ $\ge 3j$ -2J $1b, \ge 1J/2$ $\ge 2b, \ge 3$	Yes /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M₀ M₅ M₅ M₅ M₅ M₅ Gec mass Gec mass Qec mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{split} \rho &= 2 \\ \rho &= 3 \; \text{H.Z NLO} \\ \rho &= 6 \\ \rho &= 6, \; M_D = 3 \; \text{TeV, rot BH} \\ \rho &= 6, \; M_D = 3 \; \text{TeV, rot BH} \\ \kappa / M_T = 0.1 \\ \kappa / M_T = 0.1 \\ \kappa / M_T = 1.0 \\ \kappa / M_T = 1.0 \\ r / m = 15\% \\ \text{Ther} \; (1,1), \; \mathcal{B}(A^{(1,1)} \to tt) = 1 \end{split}$	1711.03301 1707.04147 1703.01127 1606.02265 1512.02566 1707.04147 1808.02380 ATLAS-CONF-2019-00 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \tau \\ \text{SSM } W' \to \tau\tau \\ \text{HVT } V' \to WV \to aqaq \text{ mc} \\ \text{HVT } V' \to WH/ZH \text{ model } \\ \text{LRSM } W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ \hline \\ 1 \ e, \mu \end{array} \geq \\ 1 \ e, \mu \\ 1 \ \tau \\ \text{odel B} 0 \ e, \mu \\ 3 \text{multi-channel} \\ \text{multi-channel} \end{array}$	- 2 b 1 b, ≥ 1J/ - 2 J	- - Yes Yes -	139 36.1 36.1 79.8 36.1 139 36.1 36.1	Z' mats 5.1 Te Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 3.0 TeV V' mass 3.7 TeV V' mass 2.93 TeV V' mass 3.25 TeV	v ev	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1903.06248 1709.07242 1805.06249 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473
ũ	Clgqqq Cléĉqq Cltttt	2 e,μ ≥1 e,μ	2j ≥1 b, ≥1 j	Yes	37.0 36.1 36.1	A A A A A A A A A A A A A A A A A A A		21.8 TeV η_{LL} 40.0 TeV η_{LL} $ C_{47} = 4\pi$	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac Colored scalar mediator (Dir $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac	DM) 0 e,μ acDM) 0 e,μ 0 e,μ DM) 0-1 e,μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36	1.55 TeV 1.57 TeV 700 GeV 3.4 TeV		$\begin{array}{l} g_{q} = 0.25, \ g_{\chi} = 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g = 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
70	Scalar LO 1 st gen Scalar LO 2 rd gen Scalar LO 3 rd gen Scalar LO 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥2j ≥2j 2b 2b	Yes Yes - Yes	5	1.4 TeV 1.56 TeV 1.03 TeV 970 GeV		$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{L}Q_2^{\mathrm{s}} \to b r) &= 1 \\ \mathcal{B}(\mathrm{L}Q_3^{\mathrm{s}} \to tr) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow \mathit{Ht}/\mathit{Zt}/\mathit{Wb} + \lambda \\ VLQ \ \mathit{BB} \rightarrow \mathit{Wt}/\mathit{Zb} + \lambda \\ VLQ \ \mathit{T_{S/3}} \ \mathit{T_{S/3}} \rightarrow \mathit{Wt} + \\ VLQ \ \mathit{T_{S/3}} \ \mathit{T_{S/3}} \rightarrow \mathit{Wt} + \\ VLQ \ \mathit{Y} \rightarrow \mathit{Wb} + \lambda \\ VLQ \ \mathit{Q} \rightarrow \mathit{Hb} + \lambda \\ VLQ \ \mathit{QQ} \rightarrow \mathit{WqWq} \end{array} $	$ \begin{array}{c} \mbox{multi-channel} \\ \mbox{multi-channel} \\ X \ 2(\mathbb{SS})/\mathbb{E}3 \ e,\mu \\ 1 \ e,\mu \\ 0 \ e,\mu, 2 \ \gamma \\ 1 \ e,\mu \end{array} $	≥1 b, ≥1 j ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	j Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	It mass 1.37 TeV B mass 1.34 TeV Tryn macn 1.64 TeV Y mass 1.85 TeV B mass 1.21 TeV Q mass 690 GeV		$\begin{split} & \text{SU}(2) \text{ doublet} \\ & \text{SU}(2) \text{ doublet} \\ & \mathcal{B}(\mathcal{T}_{3(2)} \rightarrow W t^2) = 1, \ c_R(\mathcal{T}_{3(2)} W t^2) = 1 \\ & \mathcal{B}(\mathcal{Y} \rightarrow W b) = 1, \ c_R(W b) = 1 \\ & \kappa_R = 0.5 \end{split}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton $\overline{\nu^*}$	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -		139 36.7 36.1 20.3 20.3	q" mass 6 q" mass 5.3 m b" mass 2.6 TeV d" mass 3.0 TeV r" mass 3.0 TeV	.7 TeV V	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell r$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$ \begin{array}{r} 1 \ e, \mu \\ 2 \mu \\ 2,3,4 \ e, \mu \ (SS) \\ 3 \ e, \mu, \tau \\ - \\ \sqrt{s} = 13 \ \text{TeV} \end{array} $	≥ 2 j 2 j - - - -	Yes - 3 TeV	79.8 36.1 20.3 36.1 7.0	Nº mass 560 GeV Ne mass 3.2 TeV H** mass 870 GeV H** mass 400 GeV motocherging particle mass 1.22 TeV motocherging sparticle mass 1.24 TeV		$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production D DY production, $B(H_L^{\pm 1} \rightarrow \ell \tau) = 1$ DY production, $ g = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1509.08059
*On	ly a selection of the avail	partial data able mass limits	full d on nev	ata v state:	s or phei	enomena is shown.	1	Mass scale [TeV]	

- After Higgs discovery 7 years ago, no deviation found in its properties !
- No sign of new physics with direct searches @LHC
- VBS tool for indirect search for new physics

Phenomenology of VBS

Cannot access pure VBS and pure quartic couplings (no independently gauge invariant):

EW non-VBS (including tribosons)

VBS with triple and quartic couplings

3

QCD-induced dibosons final state

Typical final states topology

- 1. Two hadronic jets at large angles, high energy
- 2. Hadronic activity suppressed between the two jets
- 3. Two bosons produced ~back-to-back

- Semi-leptonic channels less sensitive to EW cross-section but very powerful for QGC constraints (high-energy range accessed)
- Channels studied @ ATLAS allow to probe all types of quartic couplings (EFT operators)

VVjj final state	ZZ	Zy YY	W+W- WZ	W±W±	Wy
f _{S,0} , f _{S,1}	~		~	~	
f _{M,0} , f _{M,1} , f _{M,6} , f _{M,7}	~	~	~	~	~
f _{M,2} , f _{M,3} , f _{M,4} , f _{M,5}	~	~	~		~
f _{T,0} , f _{T,1} , f _{T,2}	~	~	~	~	~
f _{T,5} , f _{T,6} , f _{T,7}	~	~	~		~
f _{T,8} , f _{T,9}	~	~			

Observation of EWWZ(IIIv) + 2j

Selection:

- * 3 leptons (e/µ) with $p_{_{\rm T}}$ > 15 GeV and $|\eta|$ < 2.5
 - * at least one with 25(27) p_T threshold in 2015(2016) data
- **★ Z selection**: | M_{ll}-M_Z^{PDG} | <10GeV
- ✤ W selection: p_T > 20GeV + tighter quality cuts, m_T(W)>30 GeV
- * Jets: 2 jets with p_T >40 GeV, $|\eta|$ <4.5, η of opposite sign, m_{jj} >150 GeV

- Signal and backgrounds:
 - * EW WZjj (Sherpa 2.2.2)
 - QCD WZjj: main background, MC (Sherpa 222) normalised in CR
 - Misidentified leptons (Z+jets, Zγ, (tt), Wt, WW): data-driven
 - * ZZ QCD+EW: MC (Sherpa 222), normalised in CR
 - ttV: MC (MadGraph5), normalised in CR
 - tZ, VVV: MC (MadGraph5, Sherpa 2.1)

Phys. Lett. B 793 (2019) 469

5

Analysis strategy

EWjj cross-section results

Result on mu:

 $\mu_{WZjj-EW} = 1.77 + 0.44_{-0.40} \text{ (stat.)} + 0.15_{-0.12} \text{ (exp. syst.)} + 0.15_{-0.12} \text{ (mod. syst.)} + 0.04_{-0.02} \text{ (lumi.)} = 1.77 + 0.49_{-0.43} \text{ (stat.)}$

 Observed WZjj-EW cross-section and comparison with SM LO prediction from Sherpa and MadGraph

	Cross section in fb
$\sigma^{fid}_{WZjj-EW}$	$0.57 \stackrel{+0.14}{_{-0.13}}$ (stat) $\stackrel{+0.05}{_{-0.04}}$ (exp.syst.) $\stackrel{+0.05}{_{-0.04}}$ (mod.syst.) $\stackrel{+0.01}{_{-0.01}}$ (lumi)
$\sigma^{fid,Sherpa}_{WZjj-EW}$	$0.321 \pm 0.002 \text{ (stat)} \pm 0.005 \text{ (PDF)} \stackrel{+0.027}{_{-0.023}} \text{ (scale)}$
$\sigma^{fid, MadGraph}_{WZjj-EW}$	$0.366 \pm 0.004 \text{ (stat)}$

Differential cross-sections

Differential cross section computed in the SR (dominated by QCD)

- iterative Bayesian unfolding method
- Sherpa QCD and EW prediction normalised by their corresponding μ
- Two categories of variables:
 - * Sensible to aQGCs: $m_T(WZ)$, $\sum p_{T^1}$, $\Delta \varphi(W,Z)$
 - * Constraining jets kinematic in MC : N_{jets} , m_{jj} , $\Delta \varphi(j_1, j_2)$, $\Delta y(j_1, j_2)$, N_{jets}^{gap} (p_T >25 GeV)

8

MC modelling of jet kinematics

Observation of EWW±W±j

 Strong production doest not dominate the EW one + same sign leptons in final state reducing other backgrounds —> golden channel

Selection:

- ✤ 2 leptons with pT>27 GeV, E_T^{miss}> 30 GeV, m_{ll}> 40 GeV
 - Events with |m_{ee}-91.2|<15 GeV removed for |η|<1.37 (reduce electron charge misID)
- * Jets with $p_{_{\rm T}}\!>\!\!65,35\,GeV$, $m_{jj}\!>\!200$ GeV, $|\,\Delta Y\,|\!>\!\!2$
 - Events with >=1 b-tagged jet rejected (reduce ttbar background)
- Signal region: m_{jj}> 500 GeV (4 bins)
 - * Region 200<m_{jj}<500 GeV used as CR (1 bin)

- Backgrounds:
 - * WWjj QCD : MC (Sherpa 222)
 - Non-prompt (ttbar, W+jets): data-driven
 - * e/γ conversion :
 - Charge misID: data-driven estimate
 - * Wγ, Zγ: MC (Sherpa 2.1), pre-normalised in CR
 - ✤ WZ: MC (Sherpa 222), normalised from CR
 - ✤ Other prompt: MC (Sherpa 222 for VVV and ZZ,
 - MadGraph5 for ttV)

 W^+

ATLAS-CONF-2018-030

Event yield in channels

- Events categorised in 6 channels (lepton flavour and charge)
- * 30 bins combined in likelihood fit to extract EW ssWW cross-section (5 bins of m_{jj} x 6 channels)

✤ + WZ control region (1 bin) with 1 WZ free norm. parameter

Results

VV (WW, ZZ, WZ) semileptonic

- ✤ 3 channels : ZV->vvqq (0-lept), WV->lvqq (1-lept), ZV ->llqq (2 lept)
- 2 techniques for V->qq:
 - resolved: identify 2 small-radius jets (j)
 - merged: jet substructure large radius jet (J).
- Channel interesting because strong production is small for all channels.
- Selection: Vlept+Vhad+ 2 tagging jets (small-R)

Selection	0-lepton	1-lepton	2-lepton	
Leptons0 'loose' leptonswith $p_{\rm T} > 7 \ {\rm GeV}$		$ \begin{vmatrix} 1 & \text{`tight' lepton with } p_{\mathrm{T}} > 27 & \mathrm{GeV} \\ 0 & \text{`loose' leptons with } p_{\mathrm{T}} > 7 & \mathrm{GeV} \end{vmatrix} $	2 'loose' leptons with $p_{\rm T} > 20 \text{ GeV}$ $\geq 1 \text{ lepton with } p_{\rm T} > 28 \text{ GeV}$	
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200 GeV	> 80 GeV	_	
$m_{\ell\ell}$	_	_	$ \begin{vmatrix} 83 < m_{ee} < 99 \text{ GeV} \\ -0.0117 \times p_{\rm T}^{\mu\mu} + 85.63 < m_{\mu\mu} < 0.0185 \times p_{\rm T}^{\mu\mu} + 94 \text{ GeV} \end{vmatrix} $	
Small- R jets	$p_{\rm T} > 20 \text{ GeV if } \eta < 2.5, \text{ and } p_{\rm T} > 30 \text{ GeV if } 2.5 < \eta < 4.5$			
Large- R jets	$p_{\mathrm{T}} > 200 \text{ GeV}, \eta < 2$			
$\begin{array}{c} V_{\rm had} \to J \\ V_{\rm had} \to jj \end{array}$	$V \text{ boson tagging, } \min(m_J - m_W , m_J - m_Z)$ 64 < m_{jj} < 106 GeV, jj pair with $\min(m_{jj} - m_W , m_{jj} - m_Z)$, leading jet with $p_T > 40$ GeV			
Tagging-jets	$j \notin V_{\text{had}}, \text{ not } b\text{-tagged}, \Delta R(J,j) > 1.4$ $\eta_{\text{tag},j_1} \cdot \eta_{\text{tag},j_2} < 0, \ m_{jj}^{\text{tag}} > 400 \text{ GeV}, \ p_{\text{T}} > 30 \text{ GeV}$			
Num. of b -jets	_	0		

+ p_T^{miss} selection and angular selection (0-lepton) to suppress Multijet background

Moderately boosted V Resolved dijets

Submitted to PRD arXiv:1905.07714 12

Main Backgrounds, control regions

- Shape of kinematic variables taken from MC in almost all cases
- ***** 0-lepton category:
 - all backgrounds important -> VjjCR from mass window of Vhad
- * 1-lepton category:
 - * W+jet (Sherpa 2.1)-> WCR by reverting invariant mass requirement of Vhad
 - ttbar (PowhegBox v2)-> TopCR by reverting b-jet requirement

* 2-lepton category:

* Z+jet dominant (Sherpa 2.2.1)-> **ZCR** by reversing m_J or m_{jj} requirement

Analysis strategy

BDT distribution in the 3 channels Resolved jets

21 regions fitted simultaneously

- 9 signal region: 0,1,2 lept x (resolved, low purity merged, high purity merged)
 - ✤ high purity (HP): pass 50% boson tagger working point (WP)
 - ✤ low purity (LP): pass 80% boson tagger WP requirement but fail 50%
- * **12 control regions:** ZCR, WCR, TopCR, VjjCR for the 3 lepton channels
- Distribution used in the global likelihood:
 - BDT in signal regions
 - m_{jj} or unique bin histograms for CRs

BDT trained in each channel and region separately

Main systematics:

Category	Systematic	Size
Jets	small-R jet pT	6-2% (low-high pT)
	small-R jet resolution	10-20% (low-high pT)
	large-R jet pT	2-5% (low-high pT)
	large-R jet resolution	20-15% (low-high pT)
Backgrounds norm	VVjj QCD	30%
	single-top	20%
	Z+jets	22(42)% in merged (resolved)
	W+jets	8(14)% in merged (resolved)
EW VVjj modelling	PDF, PS, QCD scale	3-5%, 1-5%, 1-3%
	Interference shape and norm	5-10%
Discriminant modelling		5-30%

Results

Conclusions

- VBS processes = last corner of Standard Model to be explored
 - Cross-section ~1-10fb, measurements dominated by stat. error (except for VV semilept, huge systematic uncertainties)
- Dominant uncertainties generally from theory modelling -> needs for more precise predictions
- Differential cross-section in EW VV enriched region provided for the first time
- Start including EW NLO corrections -> tends to reduce predicted cross-section

Data/Theory cross-section ratio of selected VV EW processes (8 TeV and 13 TeV)

Excess in all channels (w/o NLO EW corrections) Analysis of full Run2 data will bring a lot of new interesting results !

Back-up

2

Systematic uncertainties

Object-related systematics mostly coming from jet reconstruction and calibration

- Conservative normalisation uncertainties applied on non-dominant background
 - ✤ 40% for reducible (misid. leptons) background
 - ✤ 20% for VVV
 - ✤ 15% for tZj

***** Theory uncertainties:

- QCD scale: vary renormalisation and factorization scale by 0.5 and 2
 - ✤ 20% to 30% effect in QCD, 5% for EW
- *** PDF and** *α*_s**:** standard PDF4LHC description:
 - Small effect (1-2%)
- Signal modelling (including parton shower)
 - shape difference on the BDT templates between Sherpa and MadGraph
 - ✤ Up to 14% effect
- Modelling uncertainty for QCD
 - shape difference on the BDT templates
 between Sherpa and MadGraph
 - ✤ 5-20% effect

Post-fit uncertainties on the cross-section

Source	Uncertainty [%]
WZjj-EW theory modelling	4.8
WZjj-QCD theory modelling	5.2
WZjj-EW and $WZjj$ -QCD interference	1.9
Jets	6.6
Pile-up	2.2
Electrons	1.4
Muons	0.4
b-tagging	0.1
MC statistics	1.9
Misid. lepton background	0.9
Other backgrounds	0.8
Luminosity	2.1
Total Systematics	10.7

Treatment of the interference

- Interference impact included as shape uncertainty on signal
- Estimated at LO w / MadGraph5_aMC@NLO 2.2
- ✤ Size of interference: +10% of EW WZjj
 - ✤ 10-5% uncertainty (low-high BDT values)

BDT Score

Multivariate analysis

Modelling of 5 most important variables in BDT checked in SR and QCD-CR. **Post-fit distributions** in SR 20

EWWZjj Cross-section extraction

* Fiducial phase-space:

- * Leptons (Z): $p_T > 15$ GeV, $|\eta| < 2.5$, |mll-mPDG| < 10 GeV, $\Delta R(l1(Z), l2(Z)) > 0.2$
- Lepton(W): p_T>20 GeV, , |η|<2.5, m_T(W)>30 GeV
- * $\Delta R(l(W), l(Z)) > 0.3$
- * >=2 jets anti-kt with p_T >40 GeV, $|\eta|$ <4.5
- * $\eta_{j1} x \eta_{j2} < 0$
- ✤ m_{jj}>500 GeV
- no b-quark in initial state for signal (remove tZj)
- Observed WZjj-EW cross-section and comparison with SM LO prediction from Sherpa and MadGraph (no interference, no EW correction)

	Cross section in fb
$\sigma^{fid}_{WZjj-EW}$	$0.57 \stackrel{+0.14}{_{-0.13}}$ (stat) $\stackrel{+0.05}{_{-0.04}}$ (exp.syst.) $\stackrel{+0.05}{_{-0.04}}$ (mod.syst.) $\stackrel{+0.01}{_{-0.01}}$ (lumi)
$\sigma^{fid,Sherpa}_{WZjj-EW}$	$0.321 \pm 0.002 \text{ (stat)} \pm 0.005 \text{ (PDF)} \stackrel{+0.027}{_{-0.023}} \text{ (scale)}$
$\sigma^{fid, MadGraph}_{WZjj-EW}$	$0.366 \pm 0.004 \text{ (stat)}$

Inclusive WZjj cross section

- Integrated WZjj cross section in same fiducial phase space
 - obtained from number of observed events in SR
 - Using C-factor = 0.52 for WZjj
- Good compatibility between different channels

σ_{WZjj}^{fid} Cross section in fb $\sigma_{WZjj}^{fid,Sherpa}$ 1.68 ±0.16 (stat) ±0.12 (exp.syst.) ±0.13 (mod.syst.) ±0.044 (lumi) $\sigma_{WZjj}^{fid,Sherpa}$ 2.15 ±0.01 (stat) ±0.05 (PDF) $^{+0.65}_{-0.44}$ (scale)

Backgrounds

- WWjj QCD : MC (Sherpa 222)
 - ✤ Interference EW/QCD computed with MadGraph -> +6%
- Non-prompt: ttbar, W+jets
 - Data-driven estimated using scale factors in region 1 lepton+1bjet
 - Validated in regions enriched in non-prompt leptons from ttbar (2 ss leptons + 1 b-jet +>=2jets) and W+jet (2ss leptons +0 b-jet and <= 2 jets)
- * e/γ conversion : charge misreconstruction (only for ee events) + $v\gamma$
 - Charge misreco:
 - ✤ Probability measured in MC Zee, 0.1% (central) -> few % (eta>2)
 - Data-driven estimate, method validated in region |mllSS-91.2|<15 GeV</p>
 - Wγ from MC (Sherpa 2.1) but normalised in control region : =2OS signal muons + 1 signal electron + Etmiss<30 GeV, trilepton mass close to mZ mass

Events

- **WZ:** from MC (Sherpa 222) but normalised from control region:
 - =3 leptons, 2 passing signal lepton selection
- Other prompt: from MC
 - VVV, ZZ: Sherpa 222
 - ttV: MadGraph5_aMC@NLO

MVA analysis

BDT distribution in the 3 channels **Resolved** jets

- BDT trained in each channel and region separately
 - LP and HP merged due to low stat

Variable	0-lepton	1-lepton	2-lepton
$m_{jj}^{ m tag}$	\checkmark	_	\checkmark
$\Delta\eta_{jj}^{ m tag}$			\checkmark
$p_{\mathrm{T}}^{\mathrm{tag}, j_2}$	\checkmark	\checkmark	\checkmark
m_J	\checkmark	_	_
$D_2^{(\beta=1)}$	\checkmark	_	\checkmark
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	—	_
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},J)$	\checkmark	_	_
η_ℓ	—	\checkmark	—
$n_{j,\mathrm{track}}$	\checkmark		—
ζ_V		\checkmark	\checkmark
m_{VV}	—	—	\checkmark
p_{T}^{VV}	—	_	\checkmark
m_{VVjj}	_	\checkmark	—
p_{T}^{VVjj}	—	—	\checkmark
w^{tag,j_1}	\checkmark	_	_
w^{tag,j_2}	\checkmark	_	_

Merged analysis

Variables used in the BDT:

Fiducial phase space		Predicted $\sigma_{\mathrm{EW}VVjj}^{\mathrm{fid,SM}}$ [fb]	Measured $\sigma_{\mathrm{EW}VVjj}^{\mathrm{fid,obs}}$ [fb]	
	0-lepton	4.1 ± 0.3 (theo.)	$10.1 \pm 3.3 (\text{stat.}) {}^{+4.2}_{-3.8} (\text{syst.})$	
Merged	1-lepton	$6.1 \pm 0.5 ({\rm theo.})$	$2.0 \pm 1.5 (\text{stat.}) {}^{+2.9}_{-2.8} (\text{syst.})$	
	2-lepton	$1.2 \pm 0.1 (\text{theo.})$	$2.4 \pm 0.6 (\text{stat.}) {}^{+0.8}_{-0.7} (\text{syst.})$	
	0-lepton	$9.2 \pm 0.6 ({\rm theo.})$	$22.8 \pm 7.4 (\text{stat.}) {}^{+9.4}_{-8.5} (\text{syst.})$	
Resolved	1-lepton	16.4 ± 1.0 (theo.)	$5.5 \pm 4.1 (\text{stat.}) {}^{+7.7}_{-7.5} (\text{syst.})$	
	2-lepton	6.0 ± 0.4 (theo.)	$11.8 \pm 3.0 (\text{stat.}) {}^{+3.8}_{-3.5} (\text{syst.})$	
	0-lepton	13.3 ± 0.8 (theo.)	$32.9 \pm 10.7 (\text{stat.}) {}^{+13.5}_{-12.3} (\text{syst.})$	
Inclusive	1-lepton	22.5 ± 1.5 (theo.)	$7.5 \pm 5.6 (\text{stat.}) {}^{+10.5}_{-10.2} (\text{syst.})$	
	2-lepton	$7.2 \pm 0.4 ({\rm theo.})$	$14.2 \pm 3.6 (\text{stat.}) {}^{+4.6}_{-4.2} (\text{syst.})$	