

Gefördert durch DFG Deutsche Forschungsgemeinschaft

Measurement of $t\bar{t}H$ in the $H\to b\overline{b}$ decay channel at CMS

Rencontres de Blois

Michael Waßmer on behalf of the CMS collaboration | June 4, 2019

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (ETP)

ttH in a nutshell

- SM: Yukawa-type coupling of Higgs boson to fermions ($y_f \propto m_f/v$)
 - \rightarrow expect largest coupling to top quark
- $\sigma_{\rm SM}(t\bar{t}H) \approx 0.5 \, \rm pb$ at $\sqrt{s} = 13 \, \rm TeV$
- ttH: direct tree-level access to the coupling (instead of indirect by loop contributions)
- Final state signature determined by decay of tt-system and Higgs boson

Observation in 2018 by CMS: Phys. Rev. Lett. 120, 231801 (2018) ATLAS: Phys. Lett. B 784 (2018) 173

bb analysis

June 4, 2019

Introduction	ttH, H \rightarrow bb anal
000	00000000
Michael Waßmer - Measurement of ttH in the H	$H \rightarrow b\overline{b}$ decay channel at CMS

tīH anatomy

This talk will be focused on $t\bar{t}H$, $H \rightarrow b\bar{b}$.

Introduction OOO	ttH, H $\rightarrow b\overline{b}$ analysis		Summary O
Michael Waßmer - Measurement of ttH in the H -	\rightarrow bb decay channel at CMS	June 4, 2019	3/14

	leptonic	fully-hadronic
2016 dataset, 35.9fb^{-1}	JHEP 1903 (2019) 026	JHEP 06 (2018) 101
2017 dataset, 41.5fb^{-1} 2017+2016 results combined	NEW CMS-PAS-H	IG-18-030 NEW

Improvements of 2017 analysis with respect to 2016:

- One more pixel layer, better algorithms \rightarrow improved b-tagging
- Combination of all tt decay channels
- Improved modeling of parton shower (PS) uncertainties

Introduction 00●	ttH, H \rightarrow bb analysis		O O
Michael Waßmer – Measurement of ttH in the	$H \rightarrow b\overline{b}$ decay channel at CMS	June 4, 2019	4/14

Challenges

event reconstruction

signal-enriched categories

Need categorization, control regions and multivariate methods.

Small signal $\sigma_{\rm SM,t\bar{t}H} imes BR_{\rm SM,H o b\bar{b}} \approx 0.29 \, \rm pb$

Complex multi-jet final state \rightarrow no unambiguous

Large (almost irreducible) backgrounds due to tt + b-jets production \rightarrow small S/\sqrt{B} even in

Theoretical description of $t\bar{t}$ + b-jets very difficult \rightarrow large uncertainties (20-30% @ NLO QCD)

Introduction tH, H → bb analysis Summary 000 ●00000000 0	Michael Waßmer -	Measurement of ttH in the H \rightarrow bb decay channel at CMS June 4, 201	5/14
Introduction $ttH, H \rightarrow bb$ analysis Summary	000	0000000	0
	Introduction	ttH, H \rightarrow bb analysis	Summary

tt + b-jets

- PS has large impact on used simulation
- tt + b-jets signatures on particle level: tt + b/2b/bb
- These signatures
 - contribute differently to different phase spaces (e.g. jet/b-tag multiplicity)
 - are affected by different PS uncertainties
- ⇒ treat as separate processes with separate PS uncertainties

- Add additional 50% normalization uncertainties (separately to tt + b/2b/bb) to PS (ISR, FSR, ME-PS matching, Tune) and matrix element (ME) scale uncertainties
- ⇒ Flexible model to account for remaining differences with alternative theoretical predictions

Introduction	ttH, H \rightarrow bb analysis		Summary
000	00000000		0
Michael Waßmer – Measurement of ttH in the H \rightarrow bb dec	ay channel at CMS	June 4, 2019	6/14

Semileptonic channel

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

Summary 8/14

Semileptonic channel

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS	June 4, 2019	9/14
000000000000000000000000000000000000000		0
Introduction $t\bar{t}H, H \rightarrow b\bar{b}$ analysis		Summary

Dileptonic channel

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

Fully-hadronic channel

Introduction	ttH, H \rightarrow bb analysis		Summary
000	000000000		0
Michael Waßmer – Measurement of $t\bar{t}H$ in the $H \rightarrow b\overline{b}$ dec	ay channel at CMS	June 4, 2019	11/14

Results

			41.5	5 fb ⁻¹ (13 TeV)		35.9 fb ⁻¹ (2016)) + 41.5	fb ⁻¹ (20	017) (1	13 TeV)
	CMS Prolimin	201					CMS Proliminon	<u>, </u>			гη
		αry _μ	tot	stat	syst			μ	tot	stat	syst
Fully-hadronic		-1.69	+1.43 -1.47	+0.83 -0.83	+1.16 -1.22	Fully-hadronic	⊢+ ∎+I	-0.38	+1.02 -1.06	+0.54 -0.54	+0.86 -0.91
						Single-lepton	-	1.22	+0.41 -0.37	+0.19 -0.18	+0.36 -0.32
Single-lepton		⊣ 1.84	+0.62 -0.56	+0.26 -0.26	+0.56 -0.50	Dilepton		1.04	+0.74 -0.71	+0.39 -0.38	+0.63 -0.59
Dilepton		⊣ 1.62	+0.90 -0.85	+0.50 -0.48	+0.76 -0.70	2016	H	0.85	+0.43 -0.41	+0.22 -0.22	+0.37 -0.35
						2017		1.49	+0.44 -0.40	+0.21 -0.20	+0.39 -0.35
Combined	-	1.49	+0.44 -0.40	+0.21 -0.20	+0.39 -0.35	Combined		1.15	+0.32 -0.29	+0.15	+0.28 -0.25
		5		I	10			- 5			- <u>10</u>
				μ̂ =	σ̂/σ _{sm}	1				μ̂ = 6	ŝ/σ _{sm}
Channe	el & Analysis	S				Best-fit $\hat{\mu}$	obs. (exp.)	Sig	nifio	can	се
2016 le	eptonic				0.7	72 ^{+45%} -45% (tot)		1	.6 (2.2	$)\sigma$
2017 o	nly				1.4	9 ^{+44%} -40% (tot)		З	8.7 (2.6	$)\sigma$
2017+2	2016 results	combi	inec	b	1.1	5 ^{+32%} _{-29%} (tot)		З	8.9 (3.5	$)\sigma$

Result is dominated by systematic uncertainties and compatible with the SM.

Introduction	ttH, H \rightarrow bb analysis		Summary
000	00000000		0
Michael Waßmer – Measurement of $t\bar{t}H$ in the $H \rightarrow b\bar{b}$ dec	ay channel at CMS	June 4, 2019	12/14

Systematic uncertainties

Most important uncertainties for 2016+2017 combination in table below

Uncertainty source	$\Delta \hat{\mu}$ (observed)
Total experimental	+0.15/-0.13
b tagging	+0.08/-0.07
jet energy scale and resolution	+0.05/-0.04
Total theory	+0.23/-0.19
signal	+0.15/-0.06
tt + hf modeling	+0.14/-0.15
QCD background prediction	+0.10/-0.08
Size of simulated samples	+0.10/-0.10
Total systematic	+0.28/-0.25
Statistical	+0.15/-0.15
Total	+0.32/-0.29

 $t\bar{t}$ + hf modeling: PS uncertainties (ISR, FSR, ME-PS matching, Tune), ME scale, additional normalization uncertainties

Introduction	ttH, H \rightarrow bb analysis		Summary
000	00000000		0
Michael Waßmer – Measurement of ttH in the H \rightarrow bb dec	ay channel at CMS	June 4, 2019	13/14

Summary

- \blacksquare Latest CMS result on ttH, H \rightarrow bb with 41.5 fb^{-1} of data
- Analysis relies heavily on b-tagging, description of tt + hf processes (dominant uncertainties), and machine learning techniques
- 2017 analysis combines all tt decay channels with improved b-tagging and better handling of parton shower uncertainties
- Combination of 2016 and 2017 results: Evidence for tt H production in the H $\to b\overline{b}$ decay channel

Thank you for your attention!

Introduction 000	tīH, H $\rightarrow b\overline{b}$ analysis		Summary •
Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ dec	ay channel at CMS	June 4, 2019	14/14

Backup

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of $t\bar{t}H$ in the $H \to b\bar{b}$ decay channel at CMS

June 4, 2019

Baseline event selection

	FH channel	SL channel	DL channel
Number of leptons	0	1	2
$p_{\rm T}$ of leptons (e/ μ) [GeV]		> 30/29	$> 25/25\mathrm{GeV}$
$p_{\rm T}$ of additional leptons [GeV]	< 15	< 15	< 15
$ \eta $ of leptons	< 2.4	< 2.4	< 2.4
Number of jets	≥ 6	≥ 4	≥ 2
$p_{\rm T}$ of jets [GeV]	> 40	> 30	> 30, 30, 20
$ \eta $ of jets	< 2.4	< 2.4	< 2.4
Number of b-tagged jets	≥ 2	≥ 2	≥ 1
$p_{\mathrm{T}}^{\mathrm{miss}}$		> 20 GeV	> 40 GeV

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

June 4, 2019

Best-fit values

	$\hat{\mu} \pm \text{tot}(\pm \text{stat} \pm \text{syst})$	significance obs (exp)
FH 3 b-tags	$1.36^{+3.57}_{-5.36} \left({}^{+1.68}_{-1.69} {}^{+3.15}_{-5.09} \right)$	$0.3\sigma~(0.2\sigma)$
FH 4 b-tags	$-1.54^{+1.41}_{-1.45}$ $\begin{pmatrix}+0.91 & +1.08\\-0.90 & -1.13\end{pmatrix}$	— (0.7 <i>σ</i>)
FH combined	$-1.69^{+1.43}_{-1.47}$ $\begin{pmatrix} +0.83 & +1.16 \\ -0.83 & -1.22 \end{pmatrix}$	— (0.7 <i>σ</i>)
SL 4 jets	$1.73^{+2.25}_{-2.21}$ $\begin{pmatrix} +0.88 & +2.07 \\ -0.87 & -2.04 \end{pmatrix}$	$0.8\sigma~(0.5\sigma)$
SL 5 jets	$0.73^{+0.98}_{-0.97} \left(egin{smallmatrix} +0.47 & +0.86 \\ -0.46 & -0.86 \end{smallmatrix} ight)$	$0.8\sigma~(1.0\sigma)$
$SL \ge 6$ jets	$2.05^{+0.76}_{-0.69} \left(\begin{smallmatrix} +0.31 & +0.69 \\ -0.31 & -0.62 \end{smallmatrix} \right)$	$3.0\sigma~(1.6\sigma)$
SL combined	$1.84^{+0.62}_{-0.56} \left(\begin{smallmatrix} +0.26 & +0.56 \\ -0.26 & -0.50 \end{smallmatrix} \right)$	$3.3\sigma~(1.9\sigma)$
DL 3 jets	$-2.35^{+4.40}_{-2.65}$ $\left(\begin{smallmatrix} +2.13 & +3.85 \\ -2.06 & -1.66 \end{smallmatrix} \right)$	— (0.2 <i>σ</i>)
$DL \ge 4$ jets	$1.57^{+1.02}_{-0.98}~\left(\begin{smallmatrix}+0.55&+0.86\\-0.53&-0.82\end{smallmatrix}\right)$	$1.6\sigma~(1.0\sigma)$
DL combined	$1.62^{+0.90}_{-0.85}~\left(\begin{smallmatrix}+0.50&+0.76\\-0.48&-0.70\end{smallmatrix}\right)$	$1.9\sigma~(1.2\sigma)$
FH+SL+DL combined	$1.49^{+0.44}_{-0.40} \left(\begin{smallmatrix} +0.21 & +0.39 \\ -0.20 & -0.35 \end{smallmatrix} ight)$	$3.7\sigma~(2.6\sigma)$
FH+SL+DL combined 2016+2017	$1.15^{+0.32}_{-0.29} \left(\begin{smallmatrix} +0.15 & +0.28 \\ -0.15 & -0.25 \end{smallmatrix} \right)$	$3.9\sigma~(3.5\sigma)$

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

Systematic uncertainties part 1

Source	Туре	Remarks
Integrated luminosity	rate	Signal and all backgrounds
Lepton identification/isolation	shape	Signal and all backgrounds
Trigger efficiency	shape	Signal and all backgrounds
Trigger prefiring correction	rate	Signal and all backgrounds
Pileup	shape	Signal and all backgrounds
Jet energy scale	shape	Signal and all backgrounds
Jet energy resolution	shape	Signal and all backgrounds
b tag hf fraction	shape	Signal and all backgrounds
b tag hf stats (linear)	shape	Signal and all backgrounds
b tag hf stats (quadratic)	shape	Signal and all backgrounds
b tag lf fraction	shape	Signal and all backgrounds
b tag lf stats (linear)	shape	Signal and all backgrounds
b tag lf stats (quadratic)	shape	Signal and all backgrounds
b tag charm (linear)	shape	Signal and all backgrounds
b tag charm (quadratic)	shape	Signal and all backgrounds
QGL reweighting	shape	Signal and all backgrounds
TF _{loose} correction	shape	QCD multijet estimate
H _T reweighting	shape	QCD multijet estimate
Multijet normalisation	rate	QCD multijet estimate
Renorm./fact. scales (ttH)	rate	Scale uncertainty of NLO ttH prediction
Renorm./fact. scales (tt)	rate	Scale uncertainty of NNLO tt prediction
tī+hf cross sections	rate	Additional 50% rate uncertainty of tt+hf predictions
Renorm./fact. scales (t)	rate	Scale uncertainty of NLO single t prediction

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Systematic uncertainties part 2

rate	Scale uncertainty of NNLO W and Z prediction								
rate	Scale uncertainty of NLO diboson prediction								
rate	PDF uncertainty for gg initiated processes except								
	tīH								
rate	PDF uncertainty for ttH								
rate	PDF uncertainty of qq initiated processes								
	(tī̄+W,W,Z)								
rate	PDF uncertainty of qg initiated processes (single t)								
shape	Based on the NNPDF replicas, same for ttH and ad-								
	ditional jet flavours								
shape	Renormalisation scale uncertainty of the tt ME gen-								
	erator (POWHEG), same for additional jet flavours								
shape	Factorisation scale uncertainty of the tt ME genera-								
•	tor (POWHEG), same for additional jet flavours								
shape	Initial state radiation uncertainty of the PS (for tt								
1	events), same for additional jet flavours								
shape	Final state radiation uncertainty of the PS (for tt								
1	events), same for additional jet flavours								
rate	NLO ME to PS matching, hdamp [?] (for tt events),								
	independent for additional jet flavours								
rate	Underlying event (for tt events), independent for								
	additional jet flavours								
shape	Statistical uncertainty of the signal and background								
1	prediction due to the limited sample size								
	rate rate rate rate shape shape shape shape rate rate shape								

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Variable	Definition	$SL (4 jets, \ge 3 b-tags)$	SL (5 jets, \geq 3 b-tags)	$SL~(\geq 6 jets, \geq 3 b\text{-}tags)$	DL (3jets, 2 b-tags)	DL (3jets, 3 b-tags)	DL (≥ 4 jets, 2 b-tags)	DL (\geq 4jets, 3 b-tags)	DL (≥ 4 jets, ≥ 4 b-tags)
MEM	maxtrix element method discriminant	+	+	+	-	-	-	+	+
BLR	likelihood ratio discriminating between events with 4 b quark jets and 2 b quark jets	+	-	+	-	-	-	-	-
BLR ^{trans}	$\ln[BLR/(1-BLR)]$	+	-	$^+$	-	-	-	-	-
$p_{\rm T}({\rm jet}1)$	$p_{\rm T}$ of the 1. jet, ranked in jet $p_{\rm T}$	-	+	-	-	-	-	-	-
$p_{\rm T}({\rm jet}3)$	$p_{\rm T}$ of the 3. jet, ranked in jet $p_{\rm T}$	-	$^+$	-	-	-	-	-	-
$H_{\mathrm{T}}^{\mathrm{b}}$	scalar sum of $p_{\rm T}$ of b-tagged jets	$^+$	$^+$	$^+$	$^+$	-	-	-	+
$\sum_{j,lep} p_T$	scalar sum of $p_{\rm T}$ of leptons and jets	-	-	-	+	+	-	+	-
$N_{\rm b}^{ m tight}$	number of b-tagged jets at a working point with 0.1% probability of tagging gluon and light-flavour jets	+	+	-	-	-	-	-	-
d(jet 4)	b-tagging discriminant value of 4. jet,	+	-	-	-	-	-	-	-

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

ranked in jet p_T

d_2	2. highest b-tagging discriminant value of all jets	+	+	+	-	-	-	-	-
d_j^{avg}	average b-tagging discriminant value of all jets	+	+	+	+	-	+	+	-
$d_{\rm b}^{\rm avg}$	average b-tagging discriminant value of all b-tagged jets	+	+	+	-	+	-	+	+
d _b ^{min}	minimal b-tagging discriminant value of all b-tagged jets	+	+	-	-	-	-	-	-
$\frac{1}{N_{\rm b}}\sum_{b}^{N_{\rm b}} \left(d - d_{\rm b}^{\rm avg}\right)^2$	squared difference between the b-tagged dis- criminant value of a b-tagged jet and the av- erage b-tagging discriminant values of all b- tagged jets, averaged over all b-tagged jets	+	-	+	-	-	-	_	-
m'_{j}	sum of the masses of all jets divided by the number of dijet pairs	-	-	+	-	-	-	-	-
mclosest to 125 b,b	mass of pair of b-tagged jets closest to $125\mathrm{GeV}$	-	+	-	-	+	-	-	-
$m_{\text{lep,b}}^{\min\Delta R}$	mass of pair of lepton and b-tagged jet closest in ΔR	-	-	+	-	-	-	-	-
$m_{j,j}^{\min \Delta R}$	mass of pair of jets closest in ΔR	-	-	-	+	+	-	-	-
$m_{b,b}^{\min\Delta R}$	mass of pair of b-tagged jets closest in ΔR	-	-	-	+	-	+	+	+

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

June 4, 2019

Variable	Definition	SL $(4jets, \geq 3b-tags)$	SL (5jets, \geq 3 b-tags)	SL (≥ 6 jets, ≥ 3 b-tags)	DL (3 jets, 2 b-tags)	DL (3 jets, 3 b-tags)	DL (\geq 4 jets, 2 b-tags)	DL (\geq 4 jets, 3 b-tags)	$DL \ (\geq 4 jets, \geq 4 b-tags)$	
$m_{j,b}^{\min\Delta R}$	mass of pair of jet and b-tagged jet closest in ΔR	-	-	-	_	_	+	-	+	
$m_{\rm b,b}^{\rm avg}$	average mass of all pairs of b-tagged jets	$^+$	_	_	_	_	_	_	_	
$m_{b,b}^{\max m}$	mass of pair of b-tagged jets with largest mass	-	-	-	-	+	-	+	-	
$m_{j,j,j}^{\max p_T}$	mass of tri-jet system with highest p_T	_	_	_	+	_	_	_	+	
$p_{T;b,b}^{\min \Delta R}$	sum $p_{\rm T}$ of pair of closest b-tagged jets	_	_	_	+	_	+	+	+	
$p_{T;j,j}^{\min \Delta R}$	sum $p_{\rm T}$ of pair of closest jets	_	_	_	_	+	+	_	_	
$\Delta R_{j,j}^{max}$	largest ΔR between any two jets	-	+	-	_	_	-	-	_	
$\Delta R_{b,b}^{avg}$	average ΔR between b-tagged jets	-	+	+	-	_	-	+	+	
$\Delta R_{j,j}^{avg}$	average ΔR between two jets	-	-	-	+	+	+	-	_	
$\Delta R_{j,b}^{avg}$	average ΔR between a jet and a b-tagged jets	-	-	-	-	-	+	-	_	

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

$\Delta R_{j,j}^{\min}$	minimal ΔR between any two jets	-	-	-	+	+	-	-	-	
$\Delta R_{b,b}^{\min}$	minimal ΔR between any two b-tagged jets	-	-	-	-	-	-	+	$^+$	
$\Delta R_{lep,b}^{min}$	minimal ΔR between lepton and b-tagged jet	_	+	_	_	_	_	-	_	
$\Delta \eta_{j,j}^{max}$	largest $\Delta \eta$ between any two jets	-	-	-	+	+	+	-	$^+$	
$\Delta \eta_{b,b}^{max}$	largest $\Delta \eta$ between any two b-tagged jets	-	-	-	-	-	-	+	$^+$	
Sj	$\frac{3}{2}(\lambda_2 + \lambda_3)$, with λ_i the eigenvalues of the momentum tensor computed with jets	+	+	-	-	-	-	-	-	
S ^b	$\frac{3}{2}(\lambda_2 + \lambda_3)$, with λ_i the eigenvalues of the momentum tensor computed with b-tagged jets	-	+	-	-	-	-	-	-	
S_T^j	$\frac{2\lambda_2}{\lambda_2+\lambda_1},$ with λ_i the eigenvalues of the momentum tensor computed with jets	+	-	-	-	_	_	-	-	
C ^{j,lep}	scalar sum of the jet and lepton $p_{\rm T}$ divided by the sum of the energies of all jets and leptons	-	-	-	+	+	+	-	-	
C ^b	scalar sum of the b-tagged jet p_T divided by the sum of the energies of all b-tagged jets	-	-	-	+	_	+	-	_	
H_0	0th Fox–Wolfram moment computed with all jets	-	-	-	+	-	-	+	-	
<i>R</i> ₁	ratio H_1/H_0 of 0th and first Fox–Wolfram moment computed with all jets	-	-	-	-	+	-	-	-	
General information	Dileptonic channel Semilepton	ic char	nnel		Fully	-hadro	onic cl	hanne		

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

Fully-hadronic channel

References

Post-fit pulls and impacts 2017

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

References

Post-fit pulls and impacts 2016+2017

References

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

tt + additional b-jets

Conclusion: account for uncertainties of around 30% (left plot) and consider differences between inclusive $t\bar{t}$ and $t\bar{t}$ +bb simulation (right plot) \Rightarrow 50% uncertainties on $t\bar{t}$ +hf processes

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

June 4, 2019

tt + additional b-jets

- QCD multi-scale problem
- LO tt +bb renormalisation uncertainty $\approx 70 80\%$
- $NLO \approx 20 30\%$
- 5FS with massless b-quarks: collinear g \rightarrow bb singularities \rightarrow generation cuts to phase space
- 4FS considering b-mass effects applicable to complete b-quark phase space
- matching & shower effects have a large impact

General information Dileptonic channel Semileptonic channel

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

Fully-hadronic channel

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

tī + b-jets

General information

- tt
 tt
 events with additional initial or final state radiation (ISR,FSR) and g→bb
 splitting
- Using 5FS inclusive tt
 + jets simulation → additional b-jets (not from top decay) modeled by parton shower (PS)
- PS has large impact on this simulation → uncertainties on PS parameters essential
- Considering PS parameter variations in (ISR, FSR, ME-PS matching and Tune) and QCD scale variations

Dileptonic channel

Semileptonic channel

June 4, 2019

Fully-hadronic channel

References

tt + heavy flavor splitting

tt sample split further according to gen-jets containing additional b/c hadrons with CMSSW GenHFHadronMatcher tool

- gen-jets: clustered from final state generator particles, $p_T > 20$, $|\eta| < 2.4$
- containing hadrons: jets into which b/c hadrons (before decay) that are injected as "ghosts" (energy scaled \rightarrow 0) are clustered
- additional hadrons: cannot be traced back to top-decay products

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

tt + heavy flavor splitting

Physics motivation

- tt
 tt

 tt

 tt

 th

 treated perturbatively
 - $t\bar{t} + b\bar{b}$ signal-like in terms of jets and tags
- tt
 tt
 + 2b different: collinear gluon splitting within one jet ⇒ depends on parton shower tuning
- tt + cc Similar issues, but less signal-like
- Scheme developed in coordination with ATLAS
- Assigning 50% rate uncertainty for tt
 subprocesses

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

June 4, 2019

Matrix Element for ttH(bb) vs ttbb

- Signal extraction via Matrix Element Methods (MEM):
 - Event-by-event discriminator build upon matrix elements, combined with reconstruction-level information.

$$\begin{split} & \text{Numerical} & \text{Momentum} & \text{Resolution} \\ & \text{Integration} & \text{function} \\ & w(\vec{y}|\mathcal{H}) = \sum_{i=1}^{N_{C}} \int \frac{dx_{a}dx_{b}}{2x_{a}x_{b}s} \int \prod_{k=1}^{8} \left(\frac{d^{3}\vec{p}_{k}}{(2\pi)^{3}2E_{k}}\right) (2\pi)^{4} \delta^{(E,z)} \left(p_{a} + p_{b} - \sum_{k=1}^{8} p_{k}\right) \mathcal{R}^{(x,y)} \left(\vec{p}_{T}, \sum_{k=1}^{8} p_{k}\right) \\ & \times g(x_{a}, \mu_{F})g(x_{b}, \mu_{F})|\mathcal{M}(p_{a}, p_{b}, p_{1}, ..., p_{8})|^{2} \mathcal{W}(\vec{y}, \vec{p}) \\ & \text{Parton} & \text{LO scattering} & \text{Detector} \\ & \text{density} & \text{amplitude} & \text{transfer} \\ & \text{functions} & (\text{Open Loops}) & \text{function} \\ \end{split}$$

 Construct per-event signal/background probability using full kinematic information in an analytic approach

$$P_{s/b} = \frac{w(\vec{y}|t\bar{t}H)}{w(\vec{y}|t\bar{t}H) + k_{s/b}w(\vec{y}|t\bar{t}+b\bar{b})}$$

tt +bb taken as background hypothesis, permuting over all jet assignments

B-tagging performance

Dileptonic channel

- Split events according to number of jets and btags: (3j,2b), (3j,3b), (≥ 4j,2b), (≥ 4j,3b), (≥ 4j,4b)
- Construct BDT separately for each category
- BDTs to separate signal (tt
 H) from background (tt
 +X)
- BDT uses kinematic, event-shape and b-tagging variables
- For (≥ 4j,3b),(≥ 4j,4b) also the output of the matrix element method is used as an input variable

Details on BDT training

- separate BDTs for each of the 5 categories
- implemented in TMVA package
- gradient boosting algorithm
- 50% of tt DL sample used to construct BDT (splitted in half for training and testing)
- dedicated ttH, H \rightarrow bb DL sample used for signal (splitted in half for training and testing)
- at least 1750 events per process and category available for training
- only well modeled variables considered (guality measure?) and best 12 variables chosen

Semileptonic channel

- hyperparameters optimized by particle swarm algorithm
- inclusion of MEM improved sensitivity around 10%

General information

June 4, 2019

DL channel jet/b-tag multiplicity pre-fit

Examples of BDT input variables post-fit

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

June 4, 2019

BDT discrimants pre-fit

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

BDT discrimants post-fit

Semileptonic channel

- Split events according to number of jets $(4, 5, \ge 6)$
- Multi-class ANN classifies events into classes corresponding to
 - Main tī +X backgrounds
 - ttH signal
- ANN uses kinematic, event-shape and b-tagging variables as well as output of matrix element method
- tt
 H node: signal enriched category
- Background nodes (control regions): constrain systematic uncertainties, especially on tt +hf processes

Details on ANN training

- input variable validation with goodness-of-fit tests in 1D and 2D
 - fit 1D and 2D distributions to data in each category with complete uncertainty model
 - calculate p-value from post-fit uncertainty model,
 - only allow variables with p-value \geq 0.05 in all combinations
- implemented in Keras
- feedforward NN with 3 hidden layers of 100 nodes each
- at least 2100 training events in each of the final categories
- events weighted that each process has the same number of effective events in each jet-multiplicity category
- 500 epochs with early stopping
- cross-entropy loss function
- L2 regularisation and dropout used

Semileptonic channel

Fully-hadronic channel

References

Examples of ANN input variables

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

SL channel jet/b-tag multiplicity

ANN discrimants pre-fit

ANN discrimants post-fit

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

June 4, 2019

ANN discrimants pre-fit

ANN discrimants post-fit

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

ANN discrimants pre-fit

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

ANN discrimants post-fit

tīH, H \rightarrow bb hadronic

- Selection: \geq 7 jets, \geq 3 b-tagged jets, $H_T \geq$ 500 GeV, lepton veto
- Categorization: jet and b-tag multiplicity
- 2 main backgrounds: QCD multijet and tt
- Data-driven QCD multijet determination:
 - Kinematic cuts to reject QCD events
 - Discriminate against QCD multijet with Quark-Gluon-Likelihood-Ratio
 - Estimate shape from controlregion with low number of b-tags
 - Rate is obtained during final fit to data
- tī:
- Estimated from MC simulation (same as in leptonic analysis)
- Difficult contribution: tt + bb
- Final discrimination with matrix element method separating $t\bar{t}H,H\to b\bar{b}$ with $t\bar{t}$ + $b\bar{b}$

FH channel jet/b-tag multiplicity

FH channel $\Delta \eta_{\text{jets}}$

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

June 4, 2019

FH channel MEM example

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

June 4, 2019

FH channel data-driven QCD determination

MEM discriminant

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References

Michael Waßmer – Measurement of ttH in the H $\rightarrow b\overline{b}$ decay channel at CMS

June 4, 2019

MEM discrimants pre-fit

21.5 fb⁻¹ (13 TeV) CMS Preliminary 41.5 lb⁻¹ (13 Tel CMS Preliminary 41.5 fb⁻¹ (13 TeV) 41.5 fb⁻¹ (13 TeV) 41.5 fb⁻¹ (13 TeV) 41.5 fb⁻¹ (13 TeV) 10 Events / 0. Events / 0. Events / 0. FH (7 jets, 3 b tags) Data FH (7 jets, ≥4 b tags) • Data FH (8 jets, 3 b tags) Data signal signal signal 105 10 tť+lf 10 Post-fit Post-fit Multijet Post-fit tt+lf Multijet Multijet ti+cc ti+cc tt+cc Single t Single t Single t V+iets 10 tť+b tť+h V+iets 10 11.12 V+iets 104 ti+2b ti+V ti+2b ti+v ti+V 10 tf+bb Diboson tī+bb Diboson 10 Diboson Uncertainty Uncertainty Uncertainty 10 10 10 105 10 10 10 10 10 10 Data / Pred. Data / Pred. Data / Pred. 1.2 0.8 0.8 0.6 0.6 0.3 0.2 0.2 0.5 0.6 07 02 0.4 0.5 0.3 0.4 0.5 07 MEM discriminant MEM discriminant MEM discriminant CMS Preliminary 41.5 fb⁻¹ (13 TeV) CMS Preliminary 41.5 fb⁻¹ (13 TeV) CMS Preliminary 41.5 fb⁻¹ (13 TeV) Events / 0.1 րուրութ Events / 0.1 ուրուրոնը Events / 0. 10 FH (8 iets, ≥4 b tags) Data FH (29 jets, 3 b tags) Data FH (>9 iets, >4 b tags) signal signal Data siana 10⁴ Post-fit Multijet Post-fit Multijet 10 Post-fit ti+lf ti+lf Multije 10⁶ Single # tt+cc Single t ti+cc Single 11.45 V+iets 17.23 V+iets V+iets 10 10 10 tt+2b itt+v tt+2b iti+√ mti+v tť+bb Diboson tť+bb Dibosor ť+bБ Diboson Uncertainty 10 Uncertainty Uncertainty 105 10 10 10 10 10 10 10 10 <mark>****</mark>****{****{****{****{****{**** Data / Pred. Data / Pred. Data / Pred. 0.8 0.8 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.6 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 MEM discriminant MEM discriminant MEM discriminant General information Dileptonic channel Semileptonic channel Fully-hadronic channel References

MEM discrimants post-fit

Michael Waßmer – Measurement of ttH in the H \rightarrow bb decay channel at CMS

000000

References

 D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. Tech. rep. FERMILAB-FN-1025-T. 869 pages, 295 figures, 248 tables and 1645 citations. Working Group web page: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG. Oct. 2016. URL: https://cds.cern.ch/record/2227475.

 [2] Tomáš Ježo et al. "New NLOPS predictions for tt + b -jet production at the LHC". In: Eur. Phys. J. C78.6 (2018), p. 502. DOI: 10.1140/epjc/s10052-018-5956-0. arXiv: 1802.00426 [hep-ph].

General information

Dileptonic channel

Semileptonic channel

Fully-hadronic channel

References