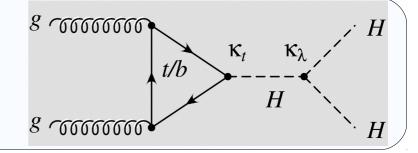


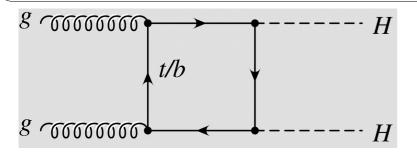
Search for di-Higgs production at 13 TeV and prospects for HL-LHC with ATLAS detector

Nikolaos Rompotis on behalf of the ATLAS collaboration

Di-Higgs at the SM

 The scalar part of the SM Lagrangian after EWK symmetry breaking is:


$$\mathcal{L}_{H} = \frac{1}{2} (\partial^{\mu} H)(\partial_{\mu} H) - \lambda v^{2} H^{2} - \lambda v H^{3} - \frac{1}{4} \lambda H^{4}$$
is GeV

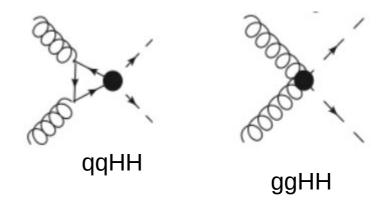

Mass term: ~125 GeV (measured at the LHC)

Higgs vacuum expectation value: υ~ 246 GeV (known from Fermi constant)

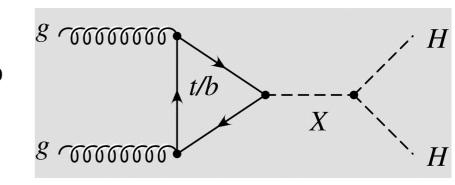
There are vertices with 3 and 4 Higgs bosons

Therefore in the SM we expect multi-Higgs production at tree-level with already known couplings

However, still very small cross section: $\sigma(HH) = 34 \text{ fb}$ (c.f. $\sigma(gg \rightarrow H) \sim 50 \text{ pb}$) due to negative interference with box diagram



Di-Higgs beyond the SM


- Vertices with 3 and 4 Higgs bosons have not been directly probed: leaves several options for beyond SM scenarios
- Anomalous couplings
- New states running in the loops

Predict anomalous *non-resonant* production of Higgs pairs

- Also possibility for di-Higgs resonant production
- Theories that include an extended Higgs sector (e.g. MSSM, NMSSM, ...)
- More exotic option with heavy resonances decaying to HH, e.g. a Lagrangian modification:

$$\mathcal{L}_H = \dots - \lambda_S S^2 H^2 + \lambda_v V_\mu V^\mu H^2$$

A survey of HH final states

 By looking at the Branching ratios we can get a first idea which channel is more important

HH→ bbbb: JHEP 01 (2019) 030

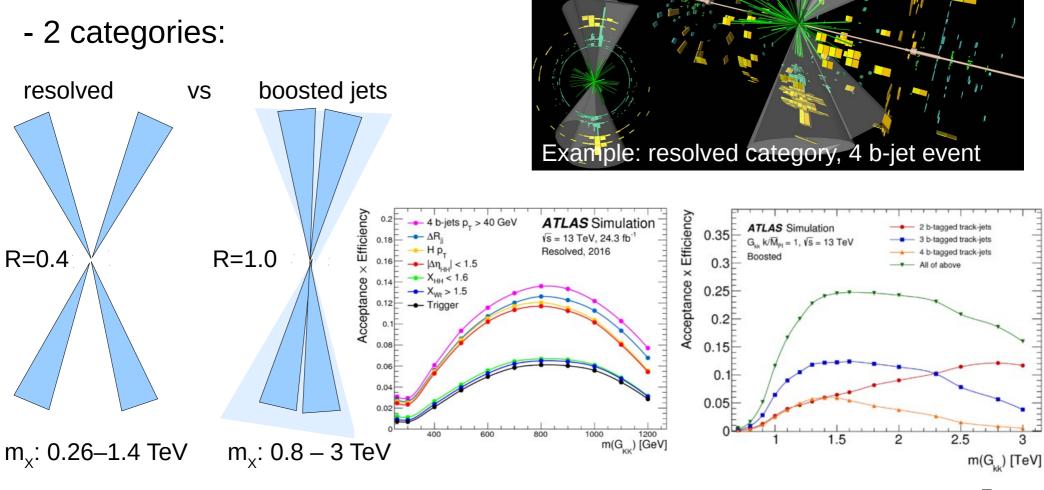
 $HH \rightarrow bb\tau\tau$: PRL 121, 191801 (2018)

HH → bbyy: JHEP 11 (2018) 040

HH→WWyy: EPJC 78 (2018) 1007 HH→WWbb: JHEP 04 (2019) 092 HH→WWWW: arXiv:1811.11028

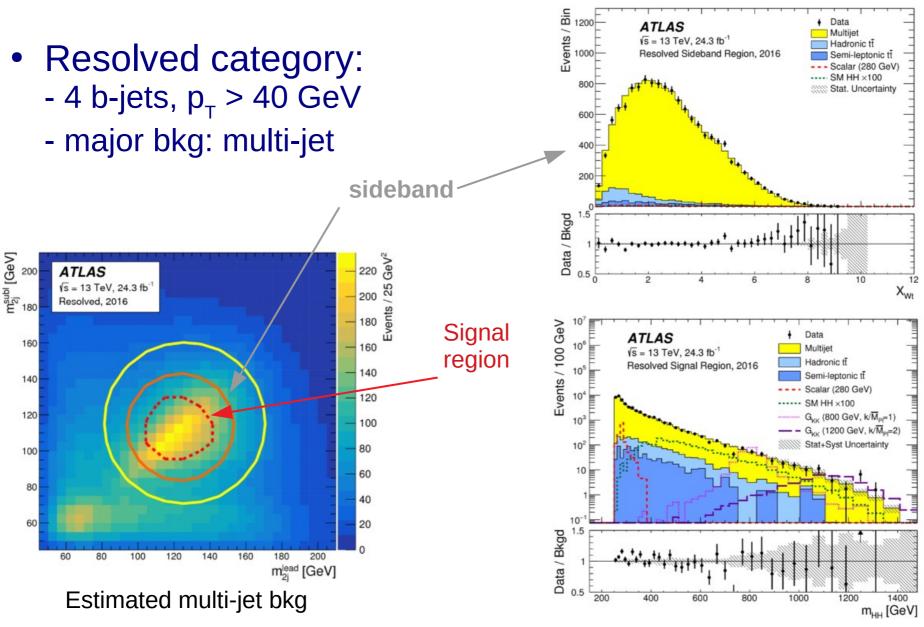
HH combination: ATLAS-CONF-2018-043 (update to be submitted to journal soon)

Indirectly via single Higgs production: ATLAS-PUB-2019-009

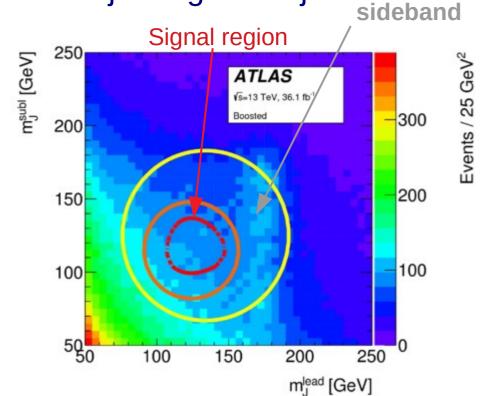


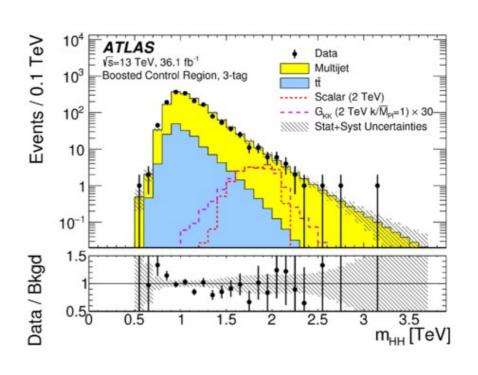
HH → bbbb

JHEP 01 (2019) 030


 Highest BR, but penalized due the large background

HH → bbbb: resolved category

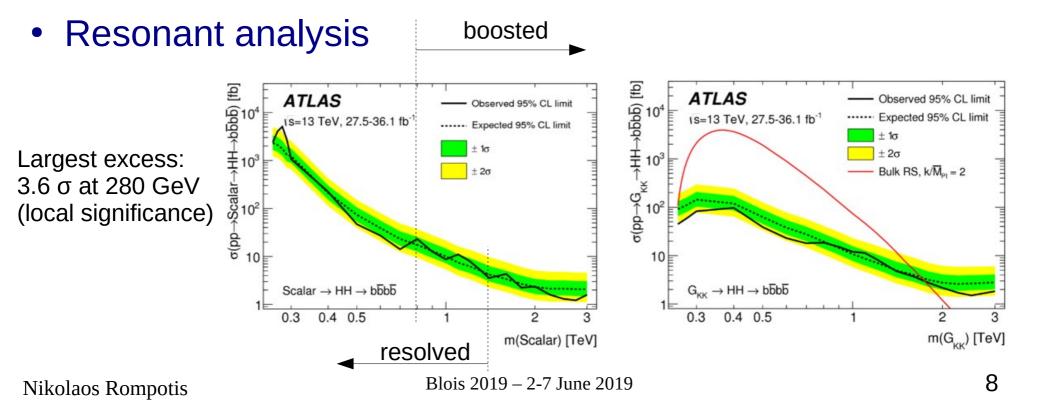




HH → bbbb: boosted category

- Boosted category:
 - 2 large R=1.0 jets, $p_{_{\rm T}}$ > 450, 250 GeV, $m_{_{\rm J}}$ > 50 GeV, $|\Delta\eta|$ < 1.7
 - categories depending on how many b-jets in large R jet substructure (2, 3 and 4 b-jets)

- major bkg: multi-jet

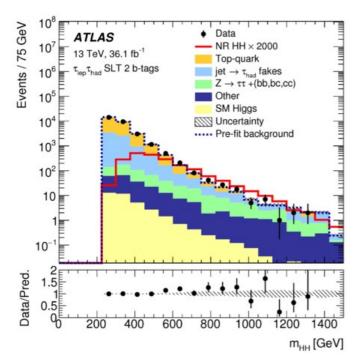

HH→ bbbb: results

Non resonant search

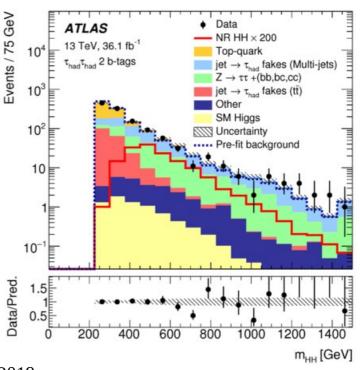
Resolved analysis only used here

Limits in units of the SM prediction for $\sigma(pp \rightarrow HH \rightarrow bbbb)$

Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
12.9	11.1	14.9	20.7	30.0	43.6



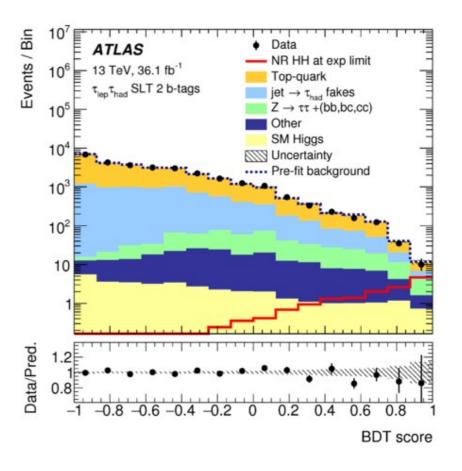
HH → bbtt


PRL 121, 191801 (2018)

- Channels depending on the tau lepton decay
- τ(lep) τ(had)
 - single lepton trigger (SLT)
 - lepton + hadronic tau trigger (LTT)
 - 1 electron or muon, 1 hadronic tau

Common: 2 b-jets, $m(\tau\tau) > 60 \text{ GeV}$

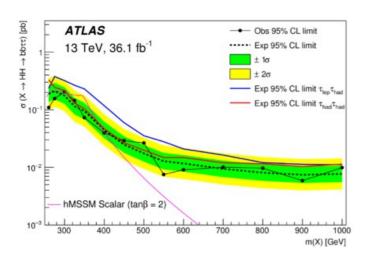
- τ(had) τ(had)
 - single hadronic tau trigger (STT)
 - di hadronic tau trigger (DTT)
 - 2 hadronic taus

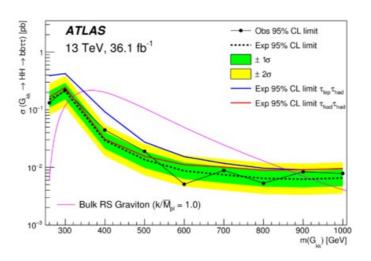


HH → bbtt

Multivariate technique is used to boost sensitivity (BDT)

Variable	$\tau_{\rm lep} \tau_{\rm had}$ channel (SLT resonant)	$\tau_{\rm lep} \tau_{\rm had}$ channel (SLT non-resonant & LTT)	$\tau_{\rm had} \tau_{\rm had}$ channel
$\overline{m_{HH}}$	✓	✓	✓
$m_{ au au}^{ m MMC}$	\checkmark	\checkmark	\checkmark
m_{bb}	\checkmark	\checkmark	\checkmark
$\Delta R(au, au)$	\checkmark	\checkmark	\checkmark
$\Delta R(b,b)$	\checkmark	\checkmark	\checkmark
$E_{ m T}^{ m miss}$	\checkmark		
$E_{\mathrm{T}}^{\mathrm{miss}} \ \phi \ \mathrm{centrality}$	\checkmark		\checkmark
$m_{ m T}^W$	\checkmark	\checkmark	
$\Delta\phi(H,H)$	\checkmark		
$\Delta p_{\mathrm{T}}(\mathrm{lep}, au_{\mathrm{had ext{-}vis}})$	\checkmark		
Sub-leading <i>b</i> -jet $p_{\rm T}$	√		

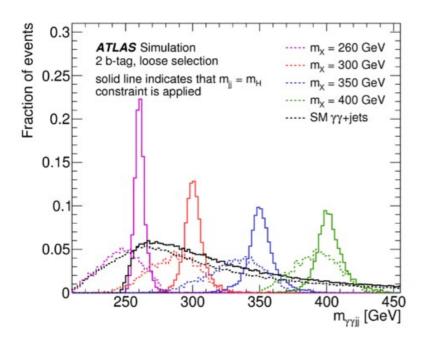


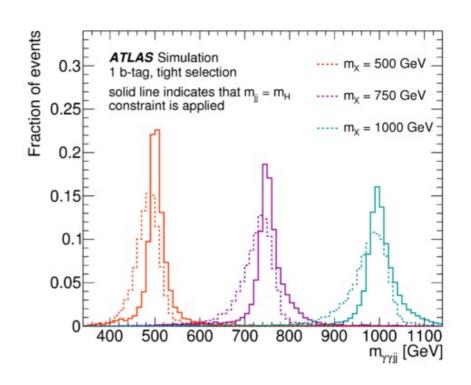

HH → bbττ: results

Non-resonant analysis: limits on hh production

		Observed	-1σ	Expected	$+1\sigma$
	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96
$ au_{ m lep} au_{ m had}$	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
<i>—</i>	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
$ au_{ m had} au_{ m had}$	$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2
Combination	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
	$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6

Resonant analysis



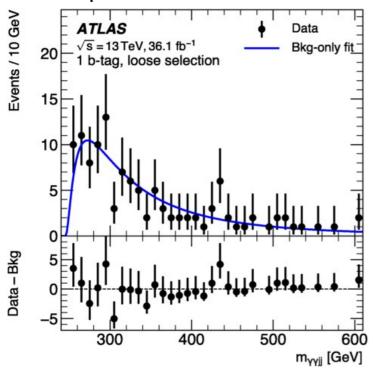

HH → bbyy

JHEP 11 (2018) 040

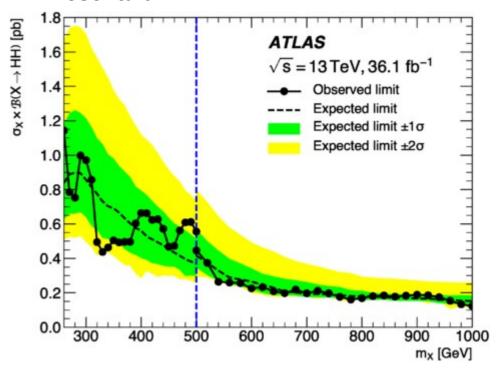
Selection:

- 2 photons, m_{vv}: 105-160 GeV
- 2 jets; categorization in 1 b-tagged and 2 b-tagged jets
- low mass (m_x : 260-500 GeV) and high mass (m_x > 500 GeV) categories

12


HH → bbyy

Results

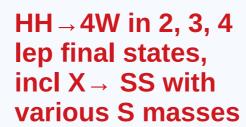

Non resonant analysis: limits on hh production

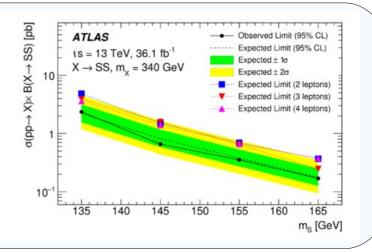
	Observed	Expected	-1σ	$+1\sigma$
$\sigma_{gg \to HH} \text{ [pb]}$	0.73	0.93	0.66	1.4
As a multiple of $\sigma_{\rm SM}$	22	28	20	40

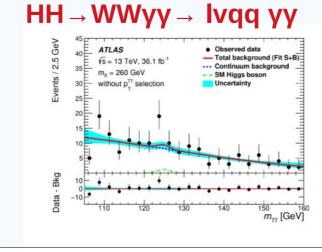
Example of final fit distribution:

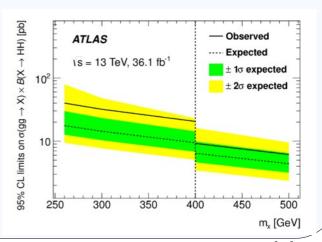
resonant:



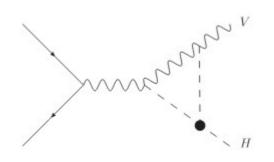


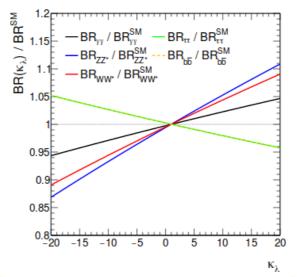



Other channels


• Brief mention of other channels that are less sensitive to λ but still very relevant heavy resonant production

Blois 2019 – 2-7 June 2019



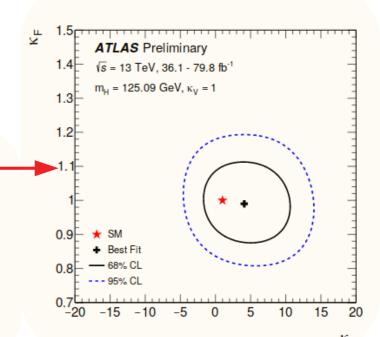


Constraints from single Higgs production

• By measuring differential cross sections of single Higgs production you can also constrain Higgs self coupling (λ)

Example Feynman diagram: λ effect in production

Results II:


- assuming that

κ_□ or κ_{\\} change

 $\kappa_{\lambda} = \lambda/\lambda_{SM}$ and

Example: λ effect on branching ratios

ATL-PHYS-PUB-2019-009

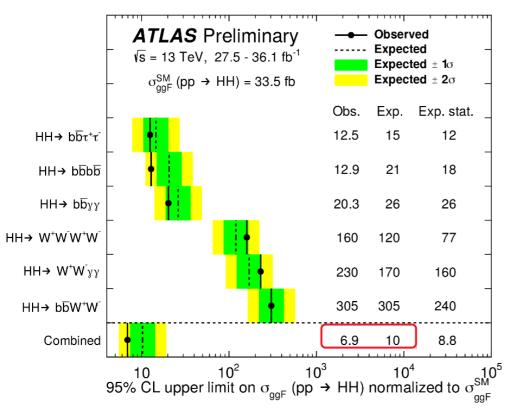
Results I:

- assuming that only $\kappa_{\lambda} = \lambda/\lambda_{SM}$ changes

Best fit value: $\kappa_{\lambda} = 4$

$$\kappa_{\lambda} = 4.0^{+4.3}_{-4.1}$$

Excluded @ 95% CL: $\kappa_{\lambda} < -3.2 \kappa_{\lambda} > 11.9$


NEW

Combination: non-resonant

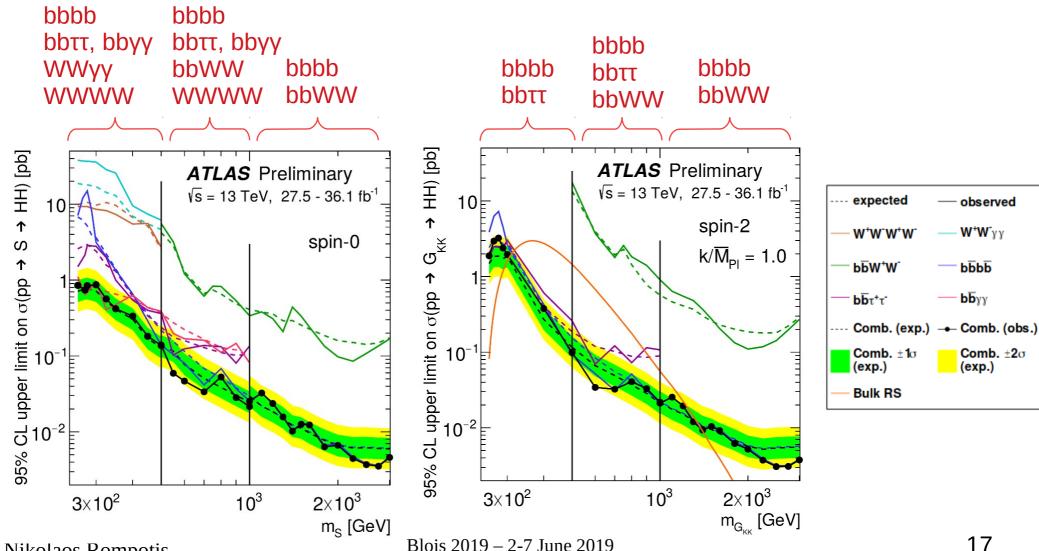
Combination all channels for the non-resonant production


Production cross section

$$\frac{\sigma(gg \rightarrow HH)}{\sigma(gg \rightarrow HH; SM)} > 6.9 \text{ (obs)} 10 \text{ (exp)}$$

Higgs self-interaction coupling

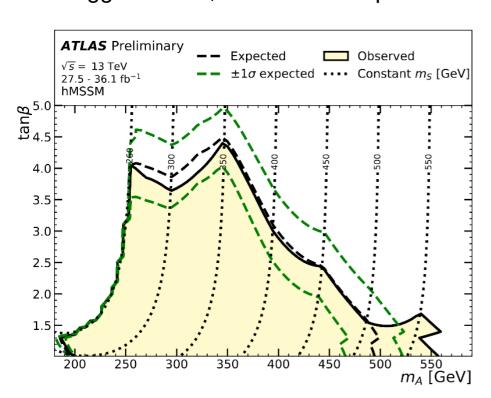
Constraint on κ_{λ} : obs. (-5.0, 12.0) exp. (-5.8, 12.0)



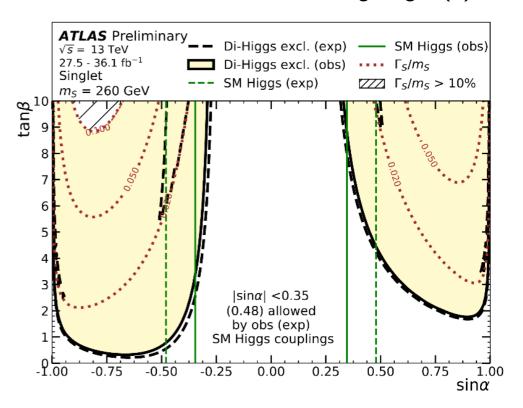
NEW

Combination: resonant

Cross section limits combination for spin 0 and spin 2



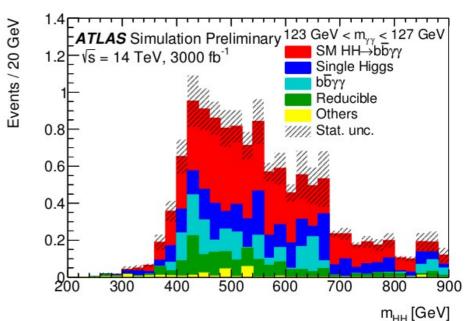
NEW C


Combination: interpretations

Electroweak singlet and hMSSM approximation

hMSSM: large mass on Susy particles apart from Higgs bosons, + other assumptions

Real EWK singlet extension of the SM: one extra scalar, one extra vev and a mixing angle (α)



Prospects for the HL-LHC

- Sensitivity estimation of the 3 major Run-II channels (bbbb, bbττ, bbγγ) with some assumptions on how the detector performance will be in the HL-LHC detectors
- Does not take into account the performance of other channels
- Extrapolation of current results for bbbb & bb $\tau\tau$, i.e. no future analysis improvements are considered
- analysis have not yet been optimized for λ measurements
- New multivariate analysis for bbyy
- Assumed that improvements in reconstruction algorithms will mitigate the effect of higher pile-up

ATLAS-PUB-2019-009

Prospects for the HL-LHC

Results of the study:

Channel	Statistical-only	Statistical + Systematic
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	0.61
$HH o b \bar{b} au^+ au^-$	2.5	2.1
$HH o b ar{b} \gamma \gamma$	2.1	2.0
Combined	3.5	3.0

Significance for the observation of HH production for 3000 fb⁻¹

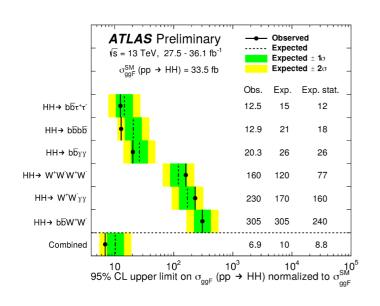
Self-coupling constraint:

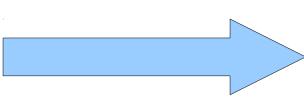
assuming $\kappa_{\lambda} = 1$ (SM)

Scenario	1σ CI	2σ CI
Statistical uncertainties only	$0.4 \le \kappa_{\lambda} \le 1.7$	$-0.10 \le \kappa_{\lambda} \le 2.7 \cup 5.5 \le \kappa_{\lambda} \le 6.9$
Systematic uncertainties	$0.25 \le \kappa_{\lambda} \le 1.9$	$-0.4 \le \kappa_{\lambda} \le 7.3$

assuming $\kappa_{\lambda} = 0$

Scenario	1σ CI	2σ CI
Statistical uncertainties only	$-0.5 \le \kappa_{\lambda} \le 0.5$	$-0.9 \le \kappa_{\lambda} \le 1.1$
Systematic uncertainties	$-0.6 \le \kappa_{\lambda} \le 0.7$	$-1.3 \le \kappa_{\lambda} \le 1.5$





Conclusions

 The way from limits till the observation of HH production will be long

Today (2019, expected): $\sigma(HH)/\sigma(HH;SM) < 10$

HL-LHC (203x?):

3 sigma observation (with 3 channels) (more with more channels + analysis optimization)

But who knows there may be more interesting things appearing on the way there!

Thank you for your attention!