Photon associated top-quark pair production Precise cross section ratios for $t\bar{t}\gamma/t\bar{t}$

Manfred Kraus G. Bevilacqua, H. B. Hartanto, T. Weber, M. Worek

31st Rencontres de Blois – Particle Physics and Cosmology5. June 2019

Motivations for $t\bar{t}\gamma$

- At the LHC @ 13 TeV rare top-quark processes become accessible
- A new window for precision measurements of top-quark properties

 $\sigma_{t\bar{t}\gamma}\sim Q_t^2$

Indirect from $t\bar{t}$

$$Q_t = Q_W - Q_b$$

[Melnikov,Scharf,Schulze '11]

Probe top-quark couplings to EW bosons

- SMEFT: \mathcal{L}_6 operators
- anomalous couplings

[Baur et al. '05, Aguilar Saavedra '09] [Schulze et al.'16, Maltoni et al.'16]

NLO predictions for $t\bar{t}\gamma$

Status of $t\bar{t}\gamma$

Experimental:

- First evidence: CDF @ TeVatron
- Observation: ATLAS @ LHC 7 TeV
- Measurements: LHC 8 TeV
- Measurements: LHC 13 TeV

[CDF Collaboration '11]

- [ATLAS Collaboration '15]
- [ATLAS, CMS Collaboration '16]
 - [ATLAS Collaboration '18]

on-shell tops: Corrections only to the production mechanism

• NLO QCD/EW fixed-order

[Duan, Guo, Han, Ma, Wang, Zhang '09 '11] [Duan, Guo, Han, Ma, Wang, Zhang '16] [Maltoni, Pagani, Tsinikos '15]

Towards more realistic final states

• Powheg + Pythia \rightarrow no spin correlations, top decay in PS

[Kardos, Trocsanyi '14]

• NLO QCD in NWA \rightarrow spin correlated, radiative decays

[Melnikov, Schulze, Scharf '11]

• Full off-shell calculation in dilepton channel

[Bevilacqua, Hartanto, MK, Weber, Worek '18]

$t\bar{t}\gamma$ in NWA @ LHC 14 TeV

Large contribution from radiative top decays

 $\sigma^{\rm NLO} = 138.1 {\rm fb}$ $\sigma_{\nu-Prod.}^{\text{NLO}} = 60.9 \text{fb}$, $\sigma_{\nu-Dec.}^{\text{NLO}} = 77.2 \text{fb}$

[Melnikov, Schulze, Scharf '11]

Full off-shell $t\bar{t}\gamma$ @ NLO

- 628 diagrams for gg channel for $t\bar{t}\gamma @ O(\alpha_s^2 \alpha^5)$
- 36032 one-loop diagrams for gg channel for $t\bar{t}\gamma @ O(\alpha_s^3 \alpha^5)$
 - includes up to 958 hexagons and 90 heptagons
 - scalar integrals with complex masses
 - NWA only up to pentagons!
- Number of sutraction terms for representative subprocesses

Subprocess	# Diags	# CS dipoles	# NS dipoles
$gg \rightarrow e^+ v_e \mu^- \bar{v}_\mu b \bar{b} \gamma g$	4348	27	9
$qg \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma q$	2344	15	5
$\bar{q}g \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma \bar{q}$	2344	15	5
$q\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}\gamma g$	2344	15	5

The HELAC-NLO framework

Final state and parameters

- Fully leptonic decays: $pp \rightarrow e^+ v_e \mu^- \bar{v}_\mu b \bar{b} \gamma + X$
- Light quarks (also bottom) and leptons are massless \rightarrow 5 FS

Kinematics

- exactly 2 b-jets, 1 photon, 2 charged leptons, missing *p*_T
- partons with $|\eta| < 5$, anti- k_T , $\Delta R = 0.4$
- cuts:

$$\begin{split} p_{T,\ell} &> 30 \; \text{GeV} \;, \qquad p_{T,b} > 40 \; \text{GeV} \;, \qquad p_T > 20 \; \text{GeV} \;, \qquad p_{T,\gamma} > 25 \; \text{GeV} \;, \\ \Delta R_{bb} &> 0.4 \;, \qquad \Delta R_{\ell\ell} > 0.4 \;, \qquad \Delta R_{\ell b} > 0.4 \;, \\ |y_\ell| &< 2.5 \;, \qquad |y_b| < 2.5 \;, \qquad |y_\gamma| < 2.5 \end{split}$$

- Frixione isolation: $R_{\gamma i} = 0.4$ [Frixione '98]
- For hard photon: $\alpha = \alpha(0) = 1/137$

Differential cross sections

 $\mu_0 = m_t/2$

 $\mu_0 = H_T/4$

[Bevilacqua, Hartanto, MK, Weber, Worek '18]

Cross section ratios for $t\bar{t}\gamma/t\bar{t}$

Can we decrease theoretical uncertainties further for $t\bar{t}\gamma$ by using ratios?

$$R = \frac{\sigma(pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma)}{\sigma(pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b})}$$

Advantages

- Experiment: more accurate measurement
 - Cancellation of common systematics, e.g.. luminosity, jet energy, ...

• Theory: more precise predictions

 Cancellation of theoretical uncertainties, e.g. scale/PDF variation if the processes are correlated
[Melnikov, Scharf, Schulze '11; Mangano, Rojo '12; Bevilacqua, Worek '14; Schulze, Soreq '16 ...]

How strong is the corellation between $t\bar{t}\gamma$ and $t\bar{t}$?

Shape of distributions for $t\bar{t}\gamma$ vs. $t\bar{t}$

 $t\bar{t}\gamma$ and $t\bar{t}$ are strongly correlated!

Uncorrelated kinematics

Shape of distributions for $t\bar{t}b\bar{b}$ vs. $t\bar{t}jj$

[Bevilacqua, Worek '14]

Cross section ratio $-t\bar{t}\gamma/t\bar{t}$

[Bevilacqua, Hartanto, Kraus, Weber, Worek '19]

• Ratio for CT14 PDF set and $p_{T,\gamma} > 25$ GeV

$$R(\mu_0 = m_t/2) = (4.56 \pm 0.25) \cdot 10^{-3}$$
 (5%)

$$R(\mu_0 = H_T/4) = (4.62 \pm 0.06) \cdot 10^{-3}$$
 (1%)

• Ratio for CT14 PDF set and $p_{T,\gamma} > 50$ GeV

$$R(\mu_0 = m_t/2) = (1.89 \pm 0.16) \cdot 10^{-3}$$
(8%)
$$R(\mu_0 = H_T/4) = (1.93 \pm 0.06) \cdot 10^{-3}$$
(3%)

Best predictions with dynamical scale choice

 $R(\mu_0 = H_T/4, p_{T,\gamma} > 25 \text{ GeV}) = (4.62 \pm 0.06 \text{ [scales]} \pm 0.02 \text{ [PDFs]}) \cdot 10^{-3}$ $R(\mu_0 = H_T/4, p_{T,\gamma} > 50 \text{ GeV}) = (1.93 \pm 0.06 \text{ [scales]} \pm 0.02 \text{ [PDFs]}) \cdot 10^{-3}$

0.05 $\mu_0 = m_t/2$ $LHC_{13}, t\bar{t}\gamma, CT14$ $\mu_0 = m_t/2$ $LHC_{13}, t\bar{t}\gamma, CT14$ 5 $p_{T,\gamma} \ge 25$ $\mathbf{N} \mu_0 = H_T/4$ $0.04 - p_{T,\gamma} \ge 25$ $\mu_0 = H_T/4$ $d\sigma/dm_{bb}$ [fb / GeV] $d\sigma/d\Delta\phi_{ll}$ [fb] 0.03 3 0.02 $\mathbf{2}$ 0.011 the contraction 0 $(\mu_0 = m_t/2)/(\mu_0 = m_t/2)$ $(\mu_0 = m_t/2)/(\mu_0 = m_t/2)$ 0.01 0.02 $t\bar{t}\gamma/t\bar{t}$ $t\bar{t}\gamma/t\bar{t}$ $(\mu_0 = H_T/4)/(\mu_0 = H_T/4)$ $(\mu_0 = H_T/4)/(\mu_0 = H_T/4)$ 0.008 0.0150.006 0.01 0.0040.005 $(\mu_0 = m_t/2)/(\mu_0 = H_T/4)$ $(\mu_0 = m_t/2)/(\mu_0 = H_T/4)$ 0.010.02 $t\bar{t}\gamma/t\bar{t}$ $t\bar{t}\gamma/t\bar{t}$ $(\mu_0 = H_T/4)/(\mu_0 = m_t/2)$ $(\mu_0 = H_T/4)/(\mu_0 = m_t/2)$ 0.008 0.0150.006 0.01 0.0040.0050.51.522.5100 200300 0 1 3 0 400 500600 $\Delta \phi_{ll}$ m_{bb} [GeV]

[Bevilacqua, Hartanto, Kraus, Weber, Worek '19]

Correlation reduces uncertainties:

e.g.
$$\Delta \phi_{\ell\ell} \approx 3$$
 : $\underbrace{\mathfrak{O}(50\%)}_{abs(m_t/2)} \rightarrow \underbrace{\mathfrak{O}(20\%)}_{abs(H_T/4)} \Leftrightarrow \underbrace{\mathfrak{O}(30\%)}_{rat(m_t/2)} \rightarrow \underbrace{\mathfrak{O}(3\%)}_{rat(H_T/4)}$

Conclusions

Conclusions

Full calculation of $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \gamma + X$ at NLO QCD

- NLO QCD corrections for $t\bar{t}\gamma$ completed
 - QCD corrections to production and radiative decays of tops
 - Photon radiation from tops and top decay products
 - Spin correlated top decays
 - off-shell effects
 - QCD corrections to non-resonant background processes

Precise predictions for cross section ratios

- $t\bar{t}\gamma$ and $t\bar{t}$ are strongly correlated!
- Ratios are very precise

Outlook:

- Comparison with NWA approximation
- Anomalous top-quark couplings

$$\mathcal{L}_{t\bar{t}\gamma} = -eQ_t \ \bar{t}\gamma^{\mu}tA_{\mu} - e\bar{t}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_t}(d_V^{\gamma} + id_A^{\gamma}\gamma_5)tA_{\mu}$$

arXiv:1809.08562