

Top quark cross sections and properties in CMS

31st Rencontres de Blois, 2 - 7 June 2019, Blois, France.

Juan R. González Fernández

(Universidad de Oviedo) on behalf of the CMS Collaboration

5 June 2019

Introduction

Top quark inclusive cross section:

- Essential for probing SM through pQCD precision tests.
- Constrains proton PDFs, α_{s} , m_{t} and new physics scenarios.
- Main background in plenty of BSM searches.

Differential cross sections:

- Unfolding at parton and particle level: direct comparison with theoretical predictions.
- Comparison between MC generators and setups and data for LO and NLO predictions.
- Studies of the modeling in different regions of the phase space: tune of parameters.
- Testing QCD, top Yukawa coupling, EFT physics, Vtb...

For all analysis (unless stated otherwise): pp collisions, $\sqrt{s} = 13$ TeV, 35.9 fb⁻¹ (2016 dataset)

t-channel inclusive cross section: e/μ + jets

Single top combination (CMS+ATLAS) at 7 and 8 TeV

Juan R. González - U. Oviedo

t-channel differential cross section (1)

- 2j1b region → two BDT: training vs all background + training vs WJets and tt, and m_T(W)
- 3j2b region $\rightarrow m_{\tau}(W)$ distribution

CMS-PAS-TOP-17-023

ML fit to **BDT** and $m_{\tau}(W)$ distributions. Control distributions:

t-channel differential cross section (2)

CMS-PAS-TOP-17-023

The polarisation angle is measured from the $\cos\theta_{pol.}^*$ distribution.

SM value: **0.436**

Measured value: 0.439 ± 0.062

 $d\sigma$ $1+2A_{\ell}\cos\theta_{\rm pol.}^{\star}$ $\overline{\sigma} \,\overline{\mathrm{d}\cos\theta_{\mathrm{pol}}^{\star}}$

tW inclusive cross section

 $\times 10^3$

CMS

Events 00100

50

Data / MC

1.0

0.6

(0, 0)

(1, 0)

JHEP 10 (2018) 117

Inclusive cross section measurement using a BDT + subleading jet p_{τ} in 2j2b.

> 63.1 ± 1.8 (stat) ± 6.4 (syst) ± 2.1 (lumi) pb

in agreement with the SM.

arXiv:1903.11144

Search for new physics using EFT in tW/tt dilepton final states.

NN in different regions by flavour (ee, $\mu\mu$, $e\mu$) and jet/btag multiplicities:

(2, 0)

(2, 1)

(Number of jets, number of b-tagged jets)

(2, 2)

(≥3, ≥0)

- tt vs tW: C(3)_{Φq}, C_{tw}, C_{tG}
- tt+tW vs FCNC tW: C_{uG} , and C_{cG}

35.9 fb⁻¹ (13 TeV)

Data

Non-W/Z

VV+tīV

\infty Uncertainty

tW

e[±]µ[∓]

New physics from tW and $t\overline{t}$ cross section

arXiv:1903.11144

No significant deviation from SM. First experimental constrain in $C_{_{G}}$ from top quark results.

Effective		Observed [TeV ⁻²]			Expected [TeV ⁻²]		
coupling	Best f it	[68% CI]	[95% CI]	Best fit	[68% CI]	[95% CI]	
tWC_G/Λ^2	-0.18	[-0.73, 0.42]	[-1.01, 0.70]	0.00	[-0.82, 0.51]	[-1.07, 0.76]	
tt $(C_{\phi \alpha}^{(3)}/\Lambda^2)$	-1.52	[-2.71, -0.33]	[-3.82, 0.63]	0.00	[-1.05, 0.88]	[-2.04, 1.63]	
$tt+tWC_{tW}/\Lambda^2$	2.38	[0.22, 4.57]	[-0.96, 5.74]	0.00	[-1.14, 5.93]	[-1.91, 6.70]	
C_{tG}/Λ^2	-0.13	[-0.27, 0.02]	[-0.41, 0.17]	0.00	[-0.15, 0.14]	[-0.30, 0.28]	
C_{uG}/Λ^2	-0.017	[-0.13, 0.13]	[-0.22, 0.22]	0.00	[-0.21, 0.21]	[-0.30, 0.30]	
tw C_{cG}/Λ^2	-0.032	[-0.26, 0.26]	[-0.46, 0.46]	0.00	[-0.46, 0.46]	[-0.65, 0.65]	

From FCNC results, limits on BR obtained at 95% CL: BR(t \rightarrow cg) < 0.53%; BR(t \rightarrow ug) < 0.12%

tt inclusive cross section

Cross section using dilepton events (ee, $\mu\mu$, Eur. Phys. J. C 79 (2019) 368 e μ), in jets and btag multiplicities.

 $\sigma_{\rm ff}$ = 803 ± 2 (stat) ± 25 (syst) ± 20 (lumi) pb

Example of post-fit distribution. Constrain of m_t^{pole} and α_s .

Template fit to different distributions. The values of the top quark pole mass and α s are also extracted.

Measurement of σ_{tt} cross checked with a cut-and-count approach in the eµ channel.

NNLO+NNLL prediction:

 $\sigma_{tt} = 832^{+20}_{-29}(scale) \pm 35 (PDF + \alpha_s)pb$ JHEP 01(2013)080

Precision beyond the theoretical predictions!

Summary of tt inclusive cross section

Results in agreement with the SM predictions at 5.02, 7, 8 and 13 TeV in pp collisions.

Multi-differential $t\bar{t}$ cross section

Double and triple differential cross section in the dilepton channel, as a function of kinematic variables of the top quark, at parton level. arXiv:1904.05237

Comparison between different generators. Powheg+Herwig has the best description for |y(t)|, $p_{T}(t)$. Other distributions are better modeled by **Powheg+Pythia**.

Multi-differential tt cross section arXiv:1904.05237

Furthermore, comparison between **different PDF sets**.

The differential cross sections are used to measure/constrain: top quark **pole mass**, **strong coupling constant**, **proton PDFs**.

tt + bb inclusive cross section (1)

Measurement in the full-hadronic final state. tt + two additional b-jets: signal region defined using a BDT and the quark-gluon likelyhood ratio (QGLR).

Classification Without Labels (CWoLa): weakly supervised approach, training data vs data in orthogonal regions. Multijet bkg from low score

tt + bb inclusive cross section (2) CMS-TOP-18-011 Signal extraction by fitting the 2D distribution of two largest b-tag output of additional jets.

coming from top quark decays.

Predictions are **lower** than the measured values.

Conclusions

- New top-quark cross section results: (multi)differential and inclusive tt and single top cross sections and inclusive ttbb cross section measurement.
- Comparison with different generators: none of them shows a good agreement with all the distributions.
- Several top properties and QCD parameters are extracted from these measurements: strong coupling constant, top quark Yukawa coupling, proton PDFs, angular and charge asymmetries...
- Cross sections used to probe EFT interpretations.

Thank you for your attention!!

BACK UP SLIDES

Differential $t\bar{t}$ cross section

Dilepton channel. The differential cross section is measured as a function of kinematic variables of top quark and tt system and their decay products. **JHEP 02 (2019) 149**

The top quark chromomagnetic dipole moment is constrained from the differential tt cross section as a function of $\Delta \phi(\mathbf{I},\mathbf{I})$.

Single top inclusive cross section

Variable	Description
Light-quark jet $ \eta $	Absolute value of the pseudorapidity of the light-quark jet
Top quark mass	Invariant mass of the top quark reconstructed from the lepton, the neutrino, and the b-tagged jet associated to the top quark decay
Dijet mass	Invariant mass of the light-quark jet and the b-tagged jet associated to the top quark decay
ΔR (lepton, b jet)	ΔR between the momentum vectors of the lepton and the b-tagged jet associated with the top quark decay
$\cos heta^*$	Cosine of the angle between the lepton and the light- quark jet in the rest frame of the top quark
Jet $p_{\rm T}$ sum	Scalar sum of the transverse momenta of the light-quark jet and the b-tagged jet associated to the top quark decay
$m_{\mathrm{T}}^{\mathrm{W}}$	Transverse mass of the W boson
$p_{\mathrm{T}}^{\mathrm{miss}}$	Missing momentum in the transverse plane of the event
ΔR (light jet, b jet)	ΔR between the momentum vectors of the light-quark jet and the b-tagged jet associated to the top quark decay
Lepton $ \eta $	Absolute value of the pseudorapidity of the selected lepton
W boson $ \eta $	Absolute value of the pseudorapidity of the recon- structed W boson
Light-quark jet mass	Invariant mass of the light-quark jet

Single top inclusive cross section

 $\sigma_{t-ch,t} = 136 \pm 1 \text{ (stat)} \pm 3 \text{ (prof)} \pm 21 \text{ (sig-mod)} \pm 4 \text{ (lumi) pb}$ = 136 ± 1 (stat) ± 22 (syst) pb = 136 ± 22 pb, $\sigma_{t-ch,\bar{t}} = 82 \pm 1 \text{ (stat)} \pm 3 \text{ (prof)} \pm 14 \text{ (sig-mod)} \pm 2 \text{ (lumi) pb}$ = 82 ± 1 (stat) ± 14 (syst) pb = 82 ± 14 pb.

 $\begin{aligned} R_{t-ch} &= 1.66 \pm 0.02 \, (\text{stat}) \pm 0.03 \, (\text{prof}) \, \pm 0.04 \, (\text{sig-mod}) \\ &= 1.66 \pm 0.02 \, (\text{stat}) \pm 0.05 \, (\text{syst}) \\ &= 1.66 \pm 0.05. \end{aligned}$

Single top inclusive cross section

	$\Delta R_{t-ch}/R_{t-ch}$	$\Delta \sigma / \sigma(t)$	$\Delta \sigma / \sigma(\bar{t})$		
Nonprofiled uncertainties					
$\mu_{\rm R}/\mu_{\rm F}$ scale <i>t</i> channel	0.1	6.2	6.5		
ME-PS scale matching <i>t</i> channel	0.5	2.9	2.3		
PS scale <i>t</i> channel	0.6	12.9	13.3		
PDF <i>t</i> channel	2.4	7.1	9.5		
Luminosity	—	2.5	2.5		
Profiled uncertainties					
JES	0.5	1.7	2.1		
JER	0.2	0.1	0.3		
Unclustered energy	0.2	0.1	0.3		
b tagging	0.1	1.2	1.2		
Muon and electron efficiencies	0.2	1.1	1.0		
Pileup	0.4	0.9	1.2		
QCD bkg. normalization	0.2	0.3	0.5		
MC sample size	2.6	2.3	3.3		
tt bkg. model and normalization	0.6	1.1	1.5		
Top quark $p_{\rm T}$	< 0.1	0.5	0.5		
tW bkg. normalization	0.1	0.4	0.5		
W/Z+jets bkg. normalization	0.2	0.3	0.5		
$\mu_{\rm R}/\mu_{\rm F}$ scale t t , tW, W/Z+jets	0.8	0.3	0.5		
PDF t \bar{t} , W/Z+jets	0.6	0.2	0.7		

tW inclusive cross section

22

tW inclusive cross section

Source	Uncertainty (^c	%)				
Experimental						
Trigger efficiencies	2.7					
Electron efficiencies	3.2					
Muon efficiencies	3.1	g		t g		t
JES	3.2	ິທ			6	
Jet energy resolution	1.8	WQQQQQ			K	
b tagging efficiency	1.4		200-		16	
Mistag rate	0.2				TES .	4
Pileup	3.3				6	
Modeling			4		No.	/
tt $\mu_{\rm R}$ and $\mu_{\rm F}$ scales	2.5		fl		7 h	
tW $\mu_{\rm R}$ and $\mu_{\rm F}$ scales	0.9					کر
Underlying event	0.4					5
Matrix element/PS matching	1.8		~~~~		/	ک
Initial-state radiation	0.8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			۲
Final-state radiation	0.8		7	2	/	۲
Color reconnection	2.0	b		W^- b		$\Lambda 7^{-}$
B fragmentation	1.9	~		V V ~		v v
Semileptonic B decay	1.5					
PDFs	1.5					
DR-DS	1.3					
Background normalization			_	A	_	A .
tī	2.8		Р	refit	Ро	stfit
VV	0.4	Region	+\\\/	+ Ī	+11/	++
Drell–Yan	1.1	Region		ll	L V V	ιι
Non-W/Z leptons	1.6	1j1b	6147 ± 442	30622 ± 1862	5440 ± 604	30592 ± 582
tīV	0.1	2i1h	3125 ± 294	48484 + 1984	2888 ± 321	47436 + 612
MC finite sample size	1.6	2j10 2j2b	725 ± 85	10101 ± 1701 25052 ± 2411	2000 ± 021 710 + 88	17100 ± 012 25114 ± 281
Full phase space extrapolation	2.9	ZJZD	723 ± 03	25052 ± 2411	719 ± 00	23114 ± 201
Total systematic (excluding integrated luminosity)	10.1					
Integrated luminosity	3.3					
Statistical	2.8					
Total	11.1					

tt inclusive cross section

tthh						
Source	VPS (PA)	VPS (P	B)			
Simulated sample size	+15/-11	+15/-	11			
Quark-gluon likelihood	+13/-8	+13/-	-8			
b tagging	± 10	± 10				
JES & JER	+5.1/-5.2	+5.0/-	5.4			
Integrated luminosity	+2.8/-2.2	+2.4/-	2.2			
Trigger efficiency	+2.6/-2.1	+2.5/-	2.2			
Pileup	+2.3/-2.0	+2.2/-	1.9			
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	+13/-9	+13/-	-9			
Parton shower scale	+11/-8	+11/-	-8			
UE tune	+9.0/-5.3	+9.0/-	5.2			
Colour reconnection	±7.2	±7.1				
Shower matching (h_{damp})	+4.3/-2.8	+3.8/-	2.7			
ttcc normalisation	+3.2/-4.4	+2.9/-	4.5			
Top quark $p_{\rm T}$ modelling	± 2.5	± 2.4				
PDFs	+2.2/-2.0	+2.2/-	2.0			
	VPS (PA)	VPS (PB)	FPS			
Measurement	$1.6\pm0.1^{+0.5}_{-0.4}$ ($1.6\pm0.1^{+0.5}_{-0.4}$	$5.5\pm0.3^{+1.6}_{-1.3}$			
POWHEG $(t\bar{t})$	1.1 ± 0.2	1.0 ± 0.2	3.5 ± 0.6			
POWHEG $(t\bar{t})$ + HERWIG++	0.8 ± 0.2	0.8 ± 0.2	3.0 ± 0.5			
MG5_AMC@NLO (4FS tītbb)	0.8 ± 0.2	0.8 ± 0.2	2.3 ± 0.7			
MG5_AMC@NLO (5FS tī+jets FxFx)	1.0 ± 0.1	1.0 ± 0.1	3.6 ± 0.3			