New Physics and the High Scale EW phase transition

lason Baldes
In collaboration with Géraldine Servant

JHEP 1810 (2018) 053
arXiv:1807.08770

be\@/\ W

Rencontres de Blois
June 4 2019

UNIVERSITE
LIBRE
DE BRUXELLES

1/19



2012. Discovery of the Brout Englert Higgs boson

19716 (@ ToV) 4 5.1 15" (7 Tov)

S/(S+B) weighted events / GeV/

2/19



2012. Discovery of the Brout Englert Higgs boson

3 el oms o w
v
Completes the SM J

2/19



2012. Discovery of the Brout Englert Higgs boson

19715 L)

S/(S+B) weighted events / GeV/

Completes the SM

2/19



12. Discovery of the Brout Englert Higgs boson
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— Focus here is on EW barvogenesis 3/19



Electroweak baryogenesis - basic picture

Image from - Gavela, Hernandez, Orloff, Péne, Quimbay [hep-ph/9406289]

@ CP violating collisions with the bubble walls lead to a chiral
asymmetry.

@ Sphalerons convert this to a Baryon Asymmetry.

@ This is swept into the expanding bubble where sphalerons are
suppressed.




Electroweak baryogenesis - Requirements
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However in the SM:

@ The Higgs mass is too large

@ Quark masses are too small

N,

We require new EW-scale physics!
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CP violation constrained by EDMs - Situation 2

ACME: |de| < 8.7x 1072 ecm (2013)  |de| < 9.4 x 1072° ecm (2017)

Is electroweak baryogenesis
dead?
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Highscale Electroweak Baryogenesis

Bold approach here:
o Lift electroweak baryogenesis from the electroweak scale.
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High scale EWBG

We will now take a novel approach and push the EWBG scale up to

the flavour scale.
@ EWPT and EWBG at the flavour scale.

@ Source of CP violation at the flavour scale (suppress EDM signature
and also flavour constraints.)

© Need the Higgs VEV to eventually get to 246 GeV and protect from
washout.

A\

Warning: large N ahead.
We will see (3) requires new (but different) physics at the EW scale.
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High scale EWBG - Symmetry non-restoration

Need to switch off the sphalerons, ¢/ T 2 1, to avoid washout after
baryogenesis.
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Need to switch off the sphalerons, ¢/ T 2 1, to avoid washout after
baryogenesis.

Use symmetry non-restoration! Weinberg '74, ... J

Thermal Contribution to Vg

0 New scalar field with mass
. 2 _ 2,1 2 2
-

Take A\;, < 0.

Xo 3 2 1 by
C¢T2z<¢+g2+gy+y3+Ndof2(ZX> T2<0
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Toy Example - Numerical analysis

An additional threshold switches the thermal mass from +ve to -ve.
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Complete Model

The Ingredients

@ flavour sector (new fermions + scalar)
@ scalar potential with higher dimensional operators

© symmetry non-restoring scalars
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Complete Model

The Ingredients

@ flavour sector (new fermions + scalar)

@ scalar potential with higher dimensional operators

© symmetry non-restoring scalars

v

The analysis

@ Phase Transitions

@ Pheno

@ IR sector + Constraints e
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Flavour sector

@ The idea is to have large/varying Yukawa couplings during the EWPT.

@ These then reach their SM values when flavour sector scalar VEVs
have reached their present values.

o Froggatt-Nielsen Mechanism for top/charm used as an example here.
@ We introduce a global U(1)pn.

_ T 2
A C ) e

Flavour constraints (K — K) imply Apx = 10 TeV. J

Soft breaking terms give mass to the Goldstone boson.

In our analysis we consider the UV flavour picture - details suppressed here.J
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The Scalar Potential
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va = 50 TeV7 )\¢A = —0.05, Aa = —0.237
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Symmetry Non-restoring sector

A[TeV]

We add a few extra scalar degrees of freedom.

NGen 2 NGen NGen

V(¢,x) = ¢X¢ZZ +—XZX, XZX,

Ngen = 2000,  Ny;=1, A =07, Ay =—-0012.
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Bubbles nucleate when
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Thermal Evolution
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Thermal Evolution
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Thermal Evolution
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Scalar Sector in the IR
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Conclusions

Summary
V.
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Conclusions

@ We have explored the possibility of lifting EWBG from the EW scale.
@ This allowed us to tie EWBG to flavour physics — source of CPV.

@ Signal is a large number of light scalars with a small coupling to the
Higgs.
@ Still somewhat at the “proof of principle” stage.

@ Other options for protecting the BAU may also be possible.

@ “Unrestored EW symmetry,” Meade and Ramanim, 1807.07578.

@ "Electroweak Baryogenesis above the Electroweak Scale,”
Glioti, Rattazzi, Vecchi, 1811.11740.
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The matter-antimatter asymmetry

CMB (in agreement with BBN):

Yg = @ — (0.86 + 0.02) x 10710

e In a symmetric universe np/s = np/s ~ 10720

@ The post-inflation causal volume is too small for baryons/antibaryons
to be sufficiently separated
(nb/s = ng/s ~ 1071% would be reached at T = 40 MeV when
MH*-” ~ 10_7/\/]@).

@ Need a mechanism to generate the asymmetry
1/7



Sakharov Conditions
© B violation
@ C and CP violation
© Departure from thermal equilibrium (or spontaneously broken CPT)

SM + FLRW

@ (B+L) violation present in symmetric phase at T 2 100 GeV from
non-perturbative EW sphaleron process.

@ CP violation observed in quark sector (but not strong enough).

© Can be driven by expansion (but SM EW phase transition is a
Crossover).

Almost there...
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Flavour sector - UV picture

In the UV completion add vector-like quarks

These transform as ug under the SM gauge group. Superscript gives FN
charge.

0 1 2
GLRr G g Gi R

A is another scalar which (partially) controls the FN quark mass

LD (M+ A)GLG]. We take M ~ as.
goy T 0
B as + A as 0 ¢ 0 G/
1 CE’,%, as as + A as 0 0 GL1
— G,% 0 as as+A 0 ¢ GL2
V2 tR as + A as 0 ¢ 0 t
CR as 0 0 0 0 CcL

e~ as/va =~ 1/5



Effective Yukawa Couplings

15
25 :
10 %20 N
S £.15
> g
05 o
o .
00y 5 10 15 20 % 5 10 15 20
¢[TeV] ¢[TeV]

Effective Yukawa couplings

@ 8mf ® (9mf
yfg:\/ia_d)’ )’fg:\/ia_A-

For va < as the Yukawa couplings are large.
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Gravitational wave signal
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Avoiding x; overabundance

@ The x; annihilate into hidden sector.
@ The x; decay into lighter states.

Option 2. The x; decay into light SM dof.

Ay Vb Vy
Mixing: 0; ~ mﬁx ¢rr>;'2
xi ¢

107° < |6y S 107 (,zfﬂ) :

Gen

Bounded by BBN and the Higgs signal strength.
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Exotic EW Higgs Decays

More decay channels open for the EW Higgs

But these are negligible

3Ngen A2 62 m?
—(1;287:?;” PTh 10710 VeV
6

> T(¢ = xixi = bbxi) ~

1

2

2 .2
e o™ 10-7 Moy
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