Three-boson signals of a three-brane world

Rashmish K. Mishra SNS Pisa and INFN Pisa

Based on: JHEP 1701 (2017) 016, JHEP 1705 (2017) 078, PRD 99 (2019) 7, 075016, JHEP 1811 (2018) 027, 1906.xxxxx Collaboration with: Kaustubh Agashe, Jack Collins, Roberto Contino, Peizhi Du, Sungwoo Hong, Doojin Kim, Kevin

31st Rencontres de Blois, 2019

Max

General Motivation: Away from the first attempts

• Naturalness as a guiding principle is under question. Many of the

favorite BSM frameworks are increasingly fine-tuned.

• Are there plausible extensions of BSM scenarios that are consistent

with observations and still meaningful phenomenologically?

RS models

Focus on this specific framework, but many considerations are model independent.

Flavor + CP + EWPT $m_{\rm KK} \gtrsim 20 \,\,{\rm TeV}$

Little hierarchy problem is not so little anymore.

Extended RS

- General Framework: the IR structure modeled by multiple IR branes.
- Bulk fields can propagate different amounts in the bulk.

• Matter can radiate gauge bosons

Simplest scenario: 1 intermediate brane

Still many possibilities!

(will need varying levels of sophistication)

- Agashe, Collins, Du, Hong, Kim, RKM, JHEP 1705 (2017) 078,
- Agashe, Collins, Du, Hong, Kim, RKM, Phys.Rev. D99 (2019) no.7, 075016,
- Agashe, Collins, Du, Hong, Kim, RKM, JHEP 1811 (2018) 027

q

q

Novel kinematic features: Cascade Decay

Challenges:

•

- Kinematic ambiguity.
 - Non-standard topology: fat jets with varying radii, merged leptons, non isolated photons, ...

"Tri" signals of various kinds.

- tri-jet
- jet + di-boson
- jet + di-photon
- tri-boson
- boson + di-photon
- tri-photon

JHEP 1705 (2017) 078

- Studied two benchmark points: ($m_{KK} = 3 \text{ TeV}$, $m_{rad} = 1 \text{ TeV}$ and 1.5 TeV).
- Most promising channels are tri-jet and jet + di-photons, where 300/fb is enough to get close to discovery reach of 3 sigma.

Decouples gluons and its partners as well.

An alternative: Decouples gluons (+ partners)

Boosted Regime and Jet free signals

 $\mathrm{RS}_3^{\mathrm{EW}}$

Phys.Rev. D99 (2019) no.7, 075016

Two differences compared to the earlier case:

- Rates for final states with jets are suppressed. Tri-bosons become genuinely the dominant signal.
- Radion production cross-section also suppressed: can have a light radion, which leads to very boosted objects at detectors.

- tri-jet
- jet + di-boson
- jet + di-photon
- tri-boson
- boson + di-photon
- tri-photon

Phys.Rev. D99 (2019) no.7, 075016

Focus on hadronic W channels:

- W + di-photon
- Three W

A simple cut and count strategy suffices.

- W tagging: $65 < M_J < 105 \, {\rm GeV}, \tau_{21} < 0.75$ with **60**% efficiency.
- Primary background: $j\gamma\gamma$, $jj\gamma$ (jet faking photon)
- Signal discriminants: high pT jet/photons, clean 2 body inv. mass in photons
- Additionally: Three body inv. mass peak crucial for KK gauge boson discovery
- Achieved significance $\sim 5\sigma \otimes 300/fb$, LHC14

Discovery channel for Radion: Significance with existing di-photon searches is ~1.5 sigma for 1 TeV radion.

Focus on hadronic W channels:

• W + di-photon

• Three W

 RS_3^{EW}

Two complications:

- Fat jets expected, with varying optimal radius.
- Combinatorial ambiguity affects the 2-body invariant mass cuts.

Focus on hadronic W channels:

- W + di-photon
- Three W

 RS_3^{EW}

Two complications:

- Fat jets expected, with varying optimal radius.
- Combinatorial ambiguity affects the 2-body invariant mass cuts.

Optimal R = 1 gives ~ 18% overall tagging efficiency.

Focus on hadronic W channels:

- W + di-photon
- Three W

 $\mathrm{RS}_3^{\mathrm{EW}}$

Two complications:

- Fat jets expected, with varying optimal radius.
- Combinatorial ambiguity affects the 2-body invariant mass cuts.

Existing di-boson searches select two hardest jets which does not construct a radion. Use a "+" cut after M_{iii} window cut.

Using optimal jet radius and the "+" cut, can get disc. sig. of ~3 at 300/fb at LHC 14.

 W_{KK}^{\pm}

Further improvements possible: new variables - product of p_T , product of tau_{21} . Requires background modeling so needs a more careful analysis.

Boosted regime: non-standard jets JHEP 1811 (2018) 027

Light scalars expected in many BSM models.

(composite Higgs model, Models with extended 4D gauge sectors,...)

At this point, what's the novelty?

The detector level objects are completely different

Leptons inside jets

Interplay of two relevant angles

Light Radion ~ 200 GeV

Desirable to identify the two W separately.

- For fully hadronic decay, just identifying sub-jets from W is not enough (for low masses).
- For semi-leptonic decay, no such ambiguity.

Fully hadronic

 m_{φ} [GeV]

Cluster sequences vs Decay sequence.

 m_{φ} [GeV]

Semi-Leptonic

Lepton Subjet Fraction (LSF_n)

р

Sig. Eff. vs Scalar Mass 0.6 ••••• R = 1.2 0.5 Signal Efficiency 0.4 0.3 Boosted 0.2 Resolved 0.1 0.0 200 400 600 800 1000 Mass (GeV)

Cluster jet into n sub-jets LSF_n = $\max_{\text{all leptons}} \frac{p_{T_{\ell_k}}}{p_{T_{s_j}}}$

 I_k is the transverse momentum of k^{th} lepton in subject s_j

Several relevant backgrounds - Zj, Zb, jjW, tt-bar. The variable selects the signal like backgrounds.

Application of all of this to the explicit 3-brane RS model with only EW in the bulk

Decay products well resolved

Such signals can be buried in data very easily.

Only gravity in the extended bulk: Dark Sectors

Contino, Max, RKM in preparation

Like RS₂, except there is a second IR brane, and the UV brane is not at Planck/GUT scale. Motivates considering non-gravitational portals to dark sectors.

To summarise

- Important to explore corners of theory space and confront them with data.
- New model considered, and model-independent lessons learnt from them: Signal can hide in data, dedicated searches are needed.
- Dark sectors arise naturally in this construction.

Backup: IR CFT interactions

Two contributions: UV CFT and IR CFT

For a fixed value of Higgs scale, IR scale is only probed by direct production

$$\delta \mathcal{L} \left(\Lambda_{\rm Higgs} \right) \sim \frac{\left(g_{\star \, \rm UV}^{\rm gauge} \right)^2}{\Lambda_{\rm Higgs}^2} J_{\rm strong \, IR}^{\mu} \left(\bar{t} \gamma_{\mu} t + H^{\dagger} D_{\mu} H \right)$$

$$\delta \mathcal{L} \left(\Lambda_{\mathrm{Higgs}} \right) \sim \frac{\left(g_{\star \,\mathrm{UV}}^{\mathrm{grav}} \right)^2}{\Lambda_{\mathrm{Higgs}}^4} T^{\mu \nu \, (t/H)} T_{\mu \nu}^{(\mathrm{strong IR})}$$

Backup: tri-jet and jet+di-photon cut flow

Cuts	<i>g-ggg</i> -BP1	<i>g-ggg</i> -BP2	jjj
No cuts	29.33	46.60	(7.7×10^7)
$N_j \geq 3$ with pre-selection cuts	23.23	40.05	$1.9 imes 10^6$
$M_{jjj} \in [2500, 3100] \text{ GeV}$	12.20	_	$7.9 imes 10^4$
$M_{j_1 j_2} \in [1700, 2900] \; { m GeV}$	11.12	_	$3.9 imes 10^4$
$M_{j_1 j_3} \in [850, 2100] \; { m GeV}$	9.96	_	$1.9 imes 10^4$
$M_{j_2 j_3} \in [800, 1050] \text{ GeV}$	5.12	_	2015.28
$p_{T,j_1} \ge 1100 \; { m GeV}$	2.73	_	266.41
$M_{all} \leq 3300 { m ~GeV}$	1.98	_	94.53
$M_{jjj} \in [2400, 3100] \text{ GeV}$	_	22.31	1.0×10^5
$M_{j_1 j_2} \in [1300, 2400] \text{ GeV}$	_	19.57	$4.8 imes 10^4$
$M_{j_1 j_3} \in [1100, 1700] \text{ GeV}$	_	13.82	$1.0 imes 10^4$
$M_{j_2 j_3} \in [900, 1550] \text{ GeV}$	_	8.81	1564
$p_{T,j_1} \ge 900 \; { m GeV}$	_	6.79	807.83
$p_{T,j_2} \ge 600 { m ~GeV}$	_	6.20	644.54
$p_{T,j_3} \geq 300 \; { m GeV}$	_	5.44	464.07
$M_{all} \in [2800, 3300] \; {\rm GeV}$	_	3.43	124.61
S/B	0.02	0.03	_
$S/\sqrt{B}~(\mathcal{L}=300~{ m fb}^{-1})$	3.49	5.25	_
$S/\sqrt{B} \ (\mathcal{L} = 3000 \ {\rm fb}^{-1})$	11.03	16.60	_

g- $g\gamma\gamma$ -BP1 Cuts g- $g\gamma\gamma$ -BP2 $j\gamma\gamma$ $jj\gamma$ (1.07×10^{5}) (8.7×10^7) No cuts 0.170.19 $N_{i(\gamma)} \geq 1$ (2) with pre-selection cuts 0.101.351.600.13 $M_{\gamma\gamma} \in [950, 1350] \text{ GeV}$ 0.100.20.13_ $M_{j\gamma\gamma} \in [2100, 3200] \text{ GeV}$ 0.020.090.02_ $M_{\gamma\gamma} \in [1450, 1550] \text{ GeV}$ 0.120.040.04_ $M_{j\gamma\gamma} \in [2500, 3150] \text{ GeV}$ 0.110.0050.006_ $S/\sum B$ 2.2510.0_ $S/\sqrt{S+\sum B}$ ($\mathcal{L}=300 \text{ fb}^{-1}$) 4.35.4_ $S/\sqrt{S+\sum B} \ (\mathcal{L}=3000 \ {\rm fb}^{-1})$ 13.617.1

Table 7. Cut flows for signal and major background events in terms of their cross sections (in fb). The numbers in the parentheses for $j\gamma\gamma$ and $jj\gamma$ are obtained with basic cuts ($p_{T,j} > 20$ GeV, $p_{T,\gamma} > 10$ GeV, $|\eta_j| < 5$, $|\eta_{\gamma}| < 2.5$, $\Delta R_{jj} > 0.4$, $\Delta R_{j\gamma} > 0.4$, $\Delta R_{\gamma\gamma} > 0.4$) at the generation level to avoid divergence. The pre-selection cuts ($p_{T,j} > 200$ GeV, $p_{T,\gamma} > 200$ GeV, $M_{\gamma\gamma} > 750$ GeV) are imposed at the parton level to generate events in the relevant phase space, and are reimposed at the detector level.

Table 6. Cut flows for signal and major background events in terms of their cross sections (in fb). The number in the parentheses for jjj is obtained with basic cuts ($p_{T,j} > 20 \text{ GeV}$, $p_{T,\gamma} > 10 \text{ GeV}$, $|\eta_j| < 5$, $|\eta_\gamma| < 2.5$, $\Delta R_{jj} > 0.4$, $\Delta R_{j\gamma} > 0.4$, $\Delta R_{\gamma\gamma} > 0.4$) at the generation level to avoid divergence. The pre-selection cuts ($p_{T,j} > 150 \text{ GeV}$, $M_{jj} > 300 \text{ GeV}$) are imposed at the parton level as well to generate events in the relevant phase space, and are reimposed at the detector level.

JHEP 1705 (2017) 078

Backup: ATLAS 1903.10415

- Analysis focuses on at least two neutrinos in the final state: to allow two leptons which reduces background.
- Invariant mass cuts are not imposed with this topology in mind.

Evidence for the production of three massive vector bosons with the ATLAS detector

The ATLAS Collaboration

A search for the production of three massive vector bosons in proton–proton collisions is performed using data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in the years 2015–2017, corresponding to an integrated luminosity of 79.8 fb⁻¹. Events with two same-sign leptons ℓ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW \rightarrow \ell \nu \ell \nu q q$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW \rightarrow \ell \nu \ell \nu \ell \nu \ell \nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ \rightarrow \ell \nu q q \ell \ell$. Finally, events with four leptons are analysed to search for $WWZ \rightarrow \ell \nu \ell \nu \ell \ell \ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.