Searches for electroweak supersymmetry in ATLAS

Yohei Yamaguchi
Tokyo Institute of Technology
on behalf of the ATLAS Collaboration

31st Rencontres de Blois, Loire Valley, France June 2-7 2019

Electroweak Supersymmetry

TeV-range limits for strongly produced SUSY particles

Electroweak SUSY less constrained due to:

- Low cross sections
- Degenerate spectra
- Mixing

All results shown assume R-parity conservation

- → the lightest SUSY particle (LSP) is a Dark Matter (DM) candidate
- \rightarrow < 3 TeV is allowed from thermal relic DM density Exclusion plots are based on simplified models
- Only few SUSY particles considered
- All the others heavy
- 100% BR
- Usually stronger limits than for realistic models

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

Search for slepton

- Direct productions have small cross sections
 - But important if other SUSY particles except LSP neutralino are heavy
- "in decay chain" analysis of 20-36 fb⁻¹ for stau
 - Phys. Rev. D 99 (2019) 012009
 - Eur. Phys. J. C (2016) 76:81
 - Eur. Phys. J. C 78 (2018) 154

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

139 fb⁻¹ result!

direct

 ν_{τ}/τ

Search for slepton

- Direct productions have small cross sections
 - But important if other SUSY particles

direct

in decay chain

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

Direct stau production

- Final state: 2 opposite sign taus + $E_{
 m T}^{
 m miss}$
 - taus are required to decay hadronically
- BDT based tau ID
 - jet shape + track multiplicity
- Backgrounds:
 - fake tau: multi-jet, W+jets
 - real tau: diboson, top and others

tau branching fraction

1-track
$$\tau_{\text{had-vis}}$$
 $\tau^- \to h^- \nu_{\tau} + N \pi^0 \ (N = 0, 1, 2)$ ~47 %

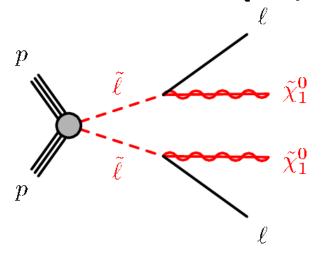
3-track
$$\tau_{\rm had-vis}$$
 $\tau^- \to h^- h^+ h^- \nu_{\tau} + N \pi^0 \ (N=0,1)$ ~15 %

Direct stau production

- 2 signal regions (SRs), optimized for different stau masses
- Requiring large $m_{
 m T2}$, calculate using 2 taus and $E_{
 m T}^{
 m miss}$
 - $m_{\text{T2}} = \min_{q_{\text{T}}} \{ \max[m_{\text{T}}(p_{\text{T}}^{\tau_1}, q_{\text{T}}), m_{\text{T}}(p_{\text{T}}^{\tau_2}, E_{\text{T}}^{\text{miss}} q_{\text{T}})] \}$
 - q_{T} is scanned all possibility region

Direct stau production

- No significant excess was observed → exclusion limits
- Considering charginos/neutralinos except $\widetilde{\chi}_1^0$ are very heavy



Sensitivity from 120 to 390 GeV → significantly extend Run1/LEP results

the first exclusion limit

Direct $ilde{e}$ and $ilde{\mu}$ production

- Considering $m_{{ ilde e}_R}=m_{{ ilde e}_L}=m_{{\widetilde \mu}_R}=m_{{\widetilde \mu}_L}$
- Final state: 2 e or μ + $E_{\rm T}^{\rm miss}$
 - same flavor, opposite sign
- Backgrounds: WW, WZ
 - MC is normalized based on control regions
- Very clean signature: 0 or 1 ISR jet, b-jet veto

Good modeling

Direct \tilde{e} and $\tilde{\mu}$ production

- $m_{
 m T2}$ is calculated with 2 leptons and $E_{
 m T}^{
 m miss}$
- No significant excess was observed → exclusion limits

Direct chargino/neutralino production

Several full Run-2 results (139 fb⁻¹)

ATLAS-CONF-2019-008: 2-lepton

ATLAS-CONF-2019-019: $h \rightarrow \gamma \gamma$

ATLAS-CONF-2019-020: 3-lepton

ATLAS-CONF-2019-014: Compressed EWK

- Direct χ_1^{\pm} production with leptonic W decays
- Similar final state as the search for $ilde{e}$ and $ilde{\mu}$
 - using m_{T2} as well
 - but different flavor lepton regions are included
- main BG: WW, WZ

adding for this search

sharing with \tilde{e} and $\tilde{\mu}$ search

No significant excess was observed → exclusion limits

$h \rightarrow \gamma \gamma$

- Considering $m_{\widetilde{\chi}_1^\pm} = m_{\widetilde{\chi}_2^0}$
- Final state: $h \to \gamma \gamma + W$
 - 36 fb⁻¹ analysis: $W \to \ell \nu$ only
 - 139 fb⁻¹ analysis: $W \rightarrow jj$ was newly added

- low $E_{
 m T}^{
 m miss}$ region is important for small $m_{\widetilde{\chi}_1^\pm} m_{\widetilde{\chi}_1^0}$ scenario
- Dominant BG: SM $h \to \gamma \gamma$, non-resonant process

$h \rightarrow \gamma \gamma$

 $m_{\gamma\gamma}$ distribution in a leptonic low $S_{E_x^{
m miss}}$ signal region

hadronic high $S_{E_{\pi}^{\mathrm{miss}}}$ signal region

Events / 5 (

non-resonant process are estimated by sidebands

[GeV]

No significant excess was observed → exclusion limits

thanks to the clean signature of $h \to \gamma \gamma$, extend limit to small $m_{\widetilde{\chi}_1^\pm} - m_{\widetilde{\chi}_1^0}$ region

Considering nearly-degenerate masses: "compressed"

Scenario 1: $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^0$ are a triplet of Higgsino-like states

- motivated by naturalness
- discriminant: $m_{\ell\ell}$

Scenario 2: $\tilde{\chi}_1^0$ is a pure bino state, $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$ are pure wino states

- motivated by the observed DM density
- discriminant: $m_{\ell\ell}$

Scenario 3: $\tilde{\chi}_1^0$ is a pure bino state, sleptons are slightly heavy

- motivated by DM thermal relic densities, g-2 anormaly
- discriminant: $m_{\rm T2}$

- Final state: 2 opposite sign same flavor low $p_{\rm T}$ leptons + $E_{\rm T}^{\rm miss}$ + ISR jet
- Backgrounds: top, diboson, fake lepton

Signal leptons have low efficiency at very low $p_{\rm T}$ \rightarrow Define complementary signal region: 1 lepton + 1 "signal track" signal track: $p_{\rm T} > 1$ GeV, isolated, matched to lepton candidates

signal track is well modelled

Background estimation:

- 1 lepton + 1 signal track: data-driven using same sign control region
- Fake leptons in 2-lepton regions: data-driven (fake factor method)
- Real leptons in 2-lepton regions: MC is normalized based on control regions

No significant excess was observed → exclusion limits

scenario 2

scenario 3

Considering

- $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0}$
- $m_{\widetilde{\chi}_2^0} \times m_{\widetilde{\chi}_1^0} > 0$

Considering

- charginos are very heavy
- $m_{\widetilde{\chi}_1^{\pm}} = \left(m_{\widetilde{\chi}_2^0} + m_{\widetilde{\chi}_1^0}\right)/2$

Considering

•
$$m_{\tilde{e}_R} = m_{\tilde{e}_L} = m_{\widetilde{\mu}_R} = m_{\widetilde{\mu}_L}$$

without ISR $p \qquad \qquad \tilde{\chi}_1^{\pm} \qquad \qquad \tilde{\chi}_1^{0} \qquad \qquad \tilde$

with ISR

- Final state: 3-lepton + $E_{\rm T}^{\rm miss}$
- Emulated Recursive Jigsaw Reconstruction: eRJR
- backgrounds: fully leptonic WZ

RJR used in 36 fb⁻¹ analysis:

without ISR $p \qquad \qquad \tilde{\chi}_1^{\pm} \qquad \qquad \tilde{\chi}_1^{0} \qquad \qquad \tilde$

with ISR

- Final state: 3-lepton + $E_{\rm T}^{\rm miss}$
- Emulated Recursive Jigsaw Reconstruction: eRJR
- backgrounds: fully leptonic WZ

RJR used in 36 fb⁻¹ analysis:

Decompose events according to assumption of particular decays and rest frames to estimate missing degrees of freedom

eRJR:

Simplified technique, using lab frame variables

→ try with more conventional variables

with ISR

reproduce the RJR result with 36 fb⁻¹ dataset BUT no significant excess with the full Run2 dataset → exclusion limits

exclude up to 350 GeV

an emulated RJ variable

Conclusion

Starting to release papers for electroweak SUSY with the full Run-2 dataset

almost sensitive to 1 TeV

Significance was highly increased with using hadronic final states

- direct stau production
- hadronic $W + h \rightarrow \gamma \gamma$

Increasing detector performance is one of the key words

soft lepton reconstruction

Many more results with the full Run-2 dataset will come!!

backup

hadronic tau

- Reconstruction seeded by calorimeter jets
- 1 or 3 tracks with in the jet
- isolation cone is defined as $0.2 < \Delta R < 0.4$

Identification BDT is trained for 1-prong and 3-prong separately

- collimation of calorimeter cells and tracks
- secondary vertex
- impact parameter
- $E_{\rm calo}/p_{\rm track}$ fraction

the high mass SR is using

stau direct search

Background estimation

- multi-jet: fully data-driven (ABCD method)
- W+jets: MC is normalized based on W+jets control region

Systematic uncertainties

Source of systematic uncertainty	SR-lowMass (%)	SR-highMass (%)
Statistical uncertainty of MC samples	11	21
Tau identification and energy scale	19	10
Normalisation uncertainties of the multi-jet background	13	9
Multi-jet estimation	6	11
W+jets theory uncertainty	5	8
Diboson theory uncertainty	5	6
Jet energy scale and resolution	5	8
$E_{\mathrm{T}}^{\mathrm{miss}}$ soft-term resolution and scale	2	2
Total	28	33
Source of systematic uncertainty	SR-lowMass (%)	SR-highMass (%)
$\mathrm{m}\;(\widetilde{ au}, {\widetilde{\chi}}_1^0)\;\mathrm{GeV}$	(120, 1)	(280, 1)
Tau identification and energy scale	29	14
Statistical uncertainty of MC samples	6	10
Signal cross section uncertainty	4	6
Jet energy scale and resolution	3	$\overline{2}$
$E_{\rm T}^{\rm miss}$ soft-term resolution and scale	3	< 1
Total	31	18

$h \rightarrow \gamma \gamma$ categorization

Channels	Names	Selection
	Category 1	$0 < S_{E_{\scriptscriptstyle T}^{\rm miss}} \le 2, N_{\ell} \ge 1$
	Category 2	$2 < S_{E_{T}^{\text{miss}}} \le 4, N_{\ell} \ge 1$
Leptonic	Category 3	$4 < S_{E_{T}^{\text{miss}}}^{1} \le 6, N_{\ell} \ge 1$
	Category 4	$S_{E_{\mathrm{T}}^{\mathrm{miss}}} > 6, N_{\ell} \ge 1$
	Category 5	$5 < S_{E_{\tau}^{\text{miss}}} \le 6, N_{\ell} = 0, N_{j} \ge 2, M_{jj} \in [40, 120] \text{ GeV}$
	Category 6	$6 < S_{E_{\tau}^{\text{miss}}}^{1} \le 7, N_{\ell} = 0, N_{j} \ge 2, M_{jj} \in [40, 120] \text{ GeV}$
Hadronic	Category 7	$7 < S_{E_{T}}^{\text{miss}} \le 8, N_{\ell} = 0, N_{j} \ge 2, M_{jj} \in [40, 120] \text{ GeV}$
	Category 8	$S_{E_T^{\text{miss}}} > 8, N_{\ell} = 0, N_j \ge 2, M_{jj} \in [40, 120] \text{ GeV}$
	Category 9	$6 < S_{E_{T}^{\text{miss}}} \le 7, N_{\ell} = 0, N_{j} < 2 \text{ or } (N_{j} \ge 2, M_{jj} \notin [40, 120] \text{ GeV})$
	Category 10	$7 < S_{E_{T}^{\text{miss}}}^{\text{miss}} \le 8, N_{\ell} = 0, N_{j} < 2 \text{ or } (N_{j} \ge 2, M_{jj} \notin [40, 120] \text{ GeV})$
Rest	Category 11	$8 < S_{E_{T}^{\text{miss}}}^{1} \le 9, N_{\ell} = 0, N_{j} < 2 \text{ or } (N_{j} \ge 2, M_{jj} \notin [40, 120] \text{ GeV})$
	Category 12	$S_{E_{\mathrm{T}}^{\mathrm{miss}}} > 9, \ N_{\ell} = 0, \ N_{j} < 2 \text{ or } (\ N_{j} \geq 2, \ M_{jj} \notin [40, 120] \ GeV)$

RJR

- Assume a pair-production of particles with specific decay trees
- Transform observable momenta to a reference-frame like $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ frame
- Determine the momenta of invisible states corresponding to the frame
- Repeat procedure recursively
- Using the decay trees, construct kinematic variables within the defined reference frames

$$H_{n,m}^{F} = \sum_{i=1}^{n} |\vec{p}_{\text{vis, }i}^{F}| + \sum_{j=1}^{m} |\vec{p}_{\text{inv, }j}^{F}|$$

$RJR \rightarrow eRJR$

- Low variables
 - $p_T^{PP} \approx (lep1 + lep2 + lep3 + MET).Pt() \equiv p_T^{soft}$
 - ► $HT_{3,1}^{PP} \approx (\ell_1).\text{Pt}() + (\ell_2).\text{Pt}() + (\ell_3).\text{Pt}() + (\text{met}).\text{Pt}() \equiv m_{\text{eff}}^{3\ell}$
 - $H_{3,1}^{PP} \approx (\ell_1).P() + (\ell_2).P() + (\ell_3).P() + (met).P() \equiv H^{boost}$
 - Contains z-component of missing energy vector
 - Contains boost
- ► ISR variables
 - ▶ $p_T^I \approx E_T^{\text{miss}}$
 - ▶ $p_T^{CM} \approx p_T$ of \sum of the (4-momenta of leptons + 4-momenta of signal jets + MET vector) $\equiv p_T^{\text{soft}}$
 - ▶ $p_T^{ISR} = \overrightarrow{ISR}$.Pt() $\approx p_T$ of $\sum \overrightarrow{\text{signal jets}} \equiv p_T^{\text{jets}}$
 - $d\phi_{ISR,I} = |\Delta\phi_{\overrightarrow{ISR},MET}| \approx |\Delta\phi(E_{\mathsf{T}}^{\mathsf{miss}},\mathsf{jets})|$
 - $R_{ISR} = \frac{|\overrightarrow{MET} \cdot \overrightarrow{ISR}|}{(p_T^{ISR})^2} \approx \frac{|\overrightarrow{MET} \cdot \widehat{jets}|}{p_T^{\text{jets}}} \equiv R(E_T^{\text{miss}}, \text{jets})$