Search for scalar top and gluino in fully hadronic final state in CMS

Koushik Mandal

Eötvös Loránd University, Budapest

On behalf of CMS Collaboration

Blois, 2019

Supersymmetry

- Symmetry between fermions and bosons
- New particles from SUSY
- 3rd generation squarks, in particular top squark (*stop*) is important to resolve fine tuning problem

FERMION	BOSON
<u>(</u>	G B H
X, V.	W H
$ \begin{pmatrix} \mathbf{v}_{\mathbf{a}} \\ \mathbf{e} \\ \mathbf{e} \\ \mathbf{l} \\ \mathbf{v}_{\mathbf{b}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{\mathbf{v}} \\ \mathbf{v}_{\mathbf{v}} \\ \mathbf{v}_{\mathbf{l}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{\mathbf{v}} \\ \mathbf{v}_{\mathbf{v}} \\ \mathbf{v}_{\mathbf{v}} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{u} \\ \mathbf{u} \\ \mathbf{v}_{\mathbf{v}} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{u} \\ \mathbf{u} \\ \mathbf{v}_{\mathbf{v}} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{u} \\ \mathbf{u} \\ \mathbf{v}_{\mathbf{v}} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{u} \\ \mathbf{u} \\ \mathbf{v}_{\mathbf{v}} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{u} \\ \mathbf{u} \\ \mathbf{v}_{\mathbf{v}} \end{pmatrix} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c} \mathbf{e}_{\mathbf{R}} \\ \mathbf{v}_{\mathbf{e}_{\mathbf{R}}} \\ \mathbf{v}_{\mathbf{e}_{\mathbf{R}}} \\ \mathbf{v}_{\mathbf{\mu}_{\mathbf{R}}} \\ \mathbf{v}_{\mathbf{\mu}_{\mathbf{R}}} \\ \mathbf{v}_{\mathbf{r}_{\mathbf{R}}} \\ \mathbf{d}_{\mathbf{R}} \\ \mathbf{s}_{\mathbf{R}} \\ \mathbf{s}_{\mathbf{R}} \end{array}$	$\begin{array}{c} \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{V}_{0} \\ \mathbf{R} \end{array} \xrightarrow{\mathbf{V}_{0}} \mathbf{R} \xrightarrow{\mathbf{V}_{0}} $

- □ Natural susy leads to searches for light 3rd generation squarks and gluino
- □ Lightest Supersymmetric Particle (LSP) could be DM candidate

Stop and Gluino signal models

Stop pair Production

Gluino pair Production

Koushik Mandal

Experimental signature in final state

Hadronic signal topology

- Multiple jets, b-tagged jets
- Missing transverse momentum (MET or p_T^{miss}) from neutralinos
- More challenging as mass splitting becomes smaller (less MET, soft jets)

Typical backgrounds

- Lost Lepton: Missing leptons (e and μ) or hadronically decaying τ, real MET from W decay
- $\Box \quad Z(\Rightarrow vv) + jets: real MET from v$

- QCD multijets events: mis-reconstruction of jets results in MET
- □ ttZ and other subdominant processes

Koushik Mandal

Hadronic search at a glance

- Data selection with hadronic trigger
- Two basic search variables, N_{iets} and MET
- More discriminating hadronic variables
- Heaving object like b and top guark and W tagging

Commonly used variables MET or p_T^{miss} $\left| \sum_{\text{Reconstructed Particle}} \right|$

- MT2 $\min_{\vec{p}_{T}^{X(1)} + \vec{p}_{T}^{X(2)} = \vec{p}_{T}^{\text{miss}}} \left[\max \left(M_{T}^{(1)}, M_{T}^{(2)} \right) \right]$ $\alpha_{\rm T} \quad \frac{1}{2} \frac{\mathcal{E}_{\rm T} - \Delta \mathcal{E}_{\rm T}}{\sqrt{(\mathcal{E}_{\rm T})^2 - (H_{\rm T}^{\rm miss})^2}} \quad \mathcal{E}_{\rm T} = \sum_{i=1}^{N_{\rm jet}} E_{\rm T}^{j_i}$
 - Search region (SR) binning \star for more sensitivity.

Koushik Mandal

CMS Hadronic SUSY analyses

Results from 2016 data

Top quark tagging

- Resolved or unmerged scenario: trijet Trijet combination of anti-kT4 jets
- Semi boosted or partially merged: dijet anti-kT8 jet as W, combine with an anti-kT4 jet
- Boosted or merged: monojet A single anti-kT8 jet tagged as top quark

Hadronic SUSY

Unmerged

hadronic top

Partially merged

hadronic top

Lost Lepton background from W decay

- Mainly comes from tf, W + jets and single top processes
- Estimation from single lepton (e/μ + jets) data control sample (CS) using translation factor (TF)
- TF from simulated events with corrections to account for data-MC differences

$$\begin{split} N_{Data}^{SR} &= TF_{simulation} * N_{Data}^{CS} \\ TF_{simulation} &= \frac{N_{simulation}^{SR}}{N_{simulation}^{CS}} \end{split}$$

Z_w background

- **T** From di-lepton ($Z \rightarrow II$) data CS
 - > Estimation using transfer factor, $Z \rightarrow II/Z \rightarrow vv$
- **T** From $Z \rightarrow vv$ simulated events
 - Shape and overall data normalization using Z→II data CS
- **G** From γ + jets data CS.
 - > Using transfer factor, Z_{yy} + jets/ γ + jets
 - Corrected with double ratio,

$$\frac{\mathcal{R}^{obs}_{Z \rightarrow \ell^+ \ell^- / \gamma}}{\mathcal{R}^{MC}_{Z \rightarrow \ell^+ \ell^- / \gamma}}$$

QCD background

Koushik Mandal

region.

Hadronic SUSY

Picture by M. Schroder

Results

Dedicated hadronic stop and gluino searches with full run 2 dataset in pipeline
 Latest results from MT2 group shed the light on stop and gluino mass limit

Limit extended by 200 GeV compared to 2016 dataset results

Koushik Mandal

Summary

- No indication of excess so far in the latest result with full run 2 data
- Stop and gluino are excluded upto 1.2 TeV and 2.2 TeV respectively
- Scope of probing more unchartered territories
- Stay tuned for more update from all the hadronic SUSY searches with full run 2 data

Thank You!

Keep on hunting, until we succeed!

Back Up

Stop and gluino search results with 2016 dataset

CMS July 2018 Overview of SUSY results: gluino pair production 36 fb^{-1} (13 TeV) $\mathbf{pp}
ightarrow \mathbf{\tilde{g}}\mathbf{\tilde{g}}$ $\tilde{\mathbf{g}} \to \mathbf{tt} \tilde{\chi}_1^0 | \mathbf{0}_{\ell}$; arXiv:1710.11188:1704.07781.1705.04650.1802.02110 1l: arXiv:1705.04673;1709.09814 2ℓ same-sign: arXiv:1704.07323 3l: arXiv:1710.09154 $\tilde{\mathbf{g}} \to \mathbf{t}\tilde{\mathbf{t}} \to \mathbf{t}\mathbf{t}\tilde{\chi}_1^0$ 0ℓ : arXiv:1710.11188 $\Delta M_{\tilde{t}} = M_t, M_{\tilde{\chi}^0_t} = 400 \text{ GeV}$ 1l: arXiv:1705.04673 $\Delta M_{\tilde{t}} = M_t, M_{\tilde{\chi}_1^0} = 400 \text{ GeV}$ 2ℓ same-sign: arXiv:1704.07323 $\Delta M_{\tilde{t}} = M_t, M_{\tilde{v}_s^0} = 400 \text{ GeV}$ $\tilde{\mathbf{g}} \to \mathbf{t} \tilde{\mathbf{t}} \to \mathbf{t} \mathbf{c} \tilde{\chi}_1^0 \ \mathbf{0} \ell$: arXiv:1710.11188 $\Delta M_i = 20 \text{ GeV}$ 2ℓ same-sign: arXiv:1704.07323 $\Delta M_i = 20 \text{ GeV}$ $\tilde{\mathbf{g}} \to \mathbf{tb}\tilde{\chi}_1^{\pm} \to \mathbf{tbff}'\tilde{\chi}_1^0$ 0 ℓ : arXiv:1704.07781 $\Delta M_{z^{\pm}} = 5 \text{ GeV}, M_{z^0} = 200 \text{ GeV}$ 2ℓ same-sign: arXiv:1704.07323 $\Delta M_{\tilde{\chi}^{\pm}} = 5 \text{ GeV}$ $\tilde{\mathbf{g}} \to (\mathbf{tt}\tilde{\chi}_1^0/\mathbf{bb}\tilde{\chi}_1^0/\mathbf{tb}\tilde{\chi}_1^\pm \to \mathbf{tbff}'\tilde{\chi}_1^0)$ 0ℓ : arXiv:1710.11188 $\Delta M_{-+} = 5$ GeV, BF(tt;bb;tb) = 1:1:2 $\tilde{\mathbf{g}} \to \mathbf{b} \mathbf{b} \tilde{\chi}_1^0 \ \mathbf{0} \ell$: arXiv:1705.04650;1704.07781,1802.02110 $\tilde{\mathbf{g}} \to \mathbf{q} \mathbf{q} \tilde{\chi}_1^0 \ \mathbf{0} \ell$: arXiv:1705.04650;1704.07781,1802.02110 $\tilde{\mathbf{g}} \to \mathbf{q}\mathbf{q}(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0) \to \mathbf{q}\mathbf{q}(\mathbf{W}/\mathbf{Z})\tilde{\chi}_1^0$ 0ℓ : arXiv:1704.07781 $BF(\tilde{\chi}_1^{\pm}; \tilde{\chi}_2^0) = 2:1, x = 0.5$ · 31: arXiv:1710.09154 $BF(\tilde{\chi}_1^{\pm};\tilde{\chi}_2^0) = 2:1, x = 0.5$ $\tilde{\mathbf{g}} \to \mathbf{q} \mathbf{q} \tilde{\chi}_1^{\pm} \to \mathbf{q} \mathbf{q} \mathbf{W} \tilde{\chi}_1^0$ 1*l*: arXiv:1709.09814 2ℓ same-sign: arXiv:1704.07323 x = 0.52ℓ same-sign: arXiv:1704.07323 $\Delta M_{c^{\pm}} = 20 \text{ GeV}$ $\tilde{\mathbf{g}} \to \mathbf{q} \mathbf{q} \tilde{\chi}_2^0 \to \mathbf{q} \mathbf{q} \mathbf{H} \tilde{\chi}_1^0$ 0*l*: arXiv:1712.08501 $\tilde{\mathbf{g}} \to \mathbf{q} \mathbf{q} \tilde{\chi}_2^0 \to \mathbf{q} \mathbf{q} \mathbf{H} / \mathbf{Z} \tilde{\chi}_1^0$ 0ℓ : arXiv:1712.08501 BF = 50%500 1000 1500 1750 250750 2000 mass scale [GeV]

Selection of observed limits at 95% CL. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise The quantities ΔM and z represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Koushik Mandal