

Blois, France



# Muon Accelerator approach

# **Blois 2019**

# Nazar Bartosik

(INFN Torino) for the LEMMA Collaboration

# Physics after the LHC

The Standard Model is incomplete and we are looking for signs of New Physics There are two ways to search for it:

- 1. direct observe decays of BSM particles produced in high  $\sqrt{s}$  collisions
- **2. indirect** find deviations from theory in precision SM measurements

The LHC will operate until about 2040 to produce ~3000 fb<sup>-1</sup> of data at  $\sqrt{s}$ =14 TeV



Nazar Bartosik

Muon Collider: Low EMittance Muon Accelerator approach

2

# **Post LHC scenarios**

#### Typically two classes of accelerators are considered as LHC successors:

- 1. pp colliders (FCC-hh)
- very heavy particles can be produced (~few TeV)
- + lots of additional radiation produced in hadronic collisions
- + kinematics of interacting partons is uncertain *(limited by PDFs)*
- → preferable for <u>direct</u> searches

- 2. *e*<sup>+</sup>*e*<sup>-</sup> colliders (*FCC*-*ee*, *ILC*, *CLIC*)
- + extremely clean final states with minimum of additional radiation
- + kinematics of interacting particles known precisely
- + limited energy reach (up to 0.5 TeV at FCC) due to synchrotron radiation
- └→ vital for <u>indirect</u> searches

**Muon Collider** 

Each of the two scenarios requires a dedicated accelerator complex + new tunnel

→ increased time and cost requirements for the accelerator construction

#### There is an alternative:

Nazar Bartosik

# Muon Collider: benefits

Advantages of both *pp* and  $e^+e^-$  colliders can be combined in a  $\mu^+\mu^-$  collider

- + same clean final states as in  $e^+e^-$  collisions
- + initial state kinematics precisely known
- + all energy delivered to the collision: multi-TeV particles can be produced
- + much less synchrotron radiation: compact layout + energy efficient
  - $\rightarrow \sqrt{s} = 14$  TeV collider can be fit in the existing LHC tunnel  $\approx 100$  TeV pp collider

#### Serious challenges to be addressed:

- accelerating and colliding muons before they decay
- suppressing background from the μ<sup>±</sup> beam decay products (*e*<sup>±</sup>, ν)
- producing a low-emittance muon beam to the accelerator focus of this talk



Nazar Bartosik

# Classical scheme: MAP

#### Major effort towards a multi-TeV Muon Collider design made by:

- U.S. Muon Accelerator Program (MAP)
- International Muon Ionization Cooling Experiment (MICE)



#### A series of RF cavities + solenoid coils to reduce the transverse beam divergence

Nazar Bartosik

# New scheme: LEMMA

A new approach has been proposed recently: Low Emittance Muon Accelerator producing muons at the  $e^+e^- \rightarrow \mu^+\mu^-$  threshold ( $\sqrt{s} \approx 45$  GeV)

- + divergence of the  $\mu^{\pm}$  beams very small and tunable via  $\sqrt{s}$
- + long  $\mu$  beam lifetime (~500 µs)  $\rightarrow$  reduced losses from the  $\mu$  decays



Very elegant and technically simpler design  $\rightarrow$  has to be experimentally proven

# LEMMA testbeam: goals

The LEMMA concept put to a test in a series of testbeam campaigns in 2017/2018

• using the CERN SPS beam line as a positron source (5 × 10<sup>6</sup> e<sup>+</sup>/spill)

The main goal of the testbeam: understand if the LEMMA approach is feasible

 $N(\mu^+\mu^-) = N(e^+) \cdot \rho(e^-) \cdot \sigma(e^+e^- \to \mu^+\mu^-) \cdot L \qquad L - \text{target length}$ 

A number of measurements foreseen to answer this question:

- kinematic properties of the produced muons (emittance, momentum, ...)
- cross section of the  $e^+e^- \rightarrow \mu^+\mu^-$  production (depends on the  $e^+$  energy)
- effect of the target material/thickness

#### Data taking performed with a number of different configurations:

- target materials: Be, C
- Target thickness: 2 cm, 6 cm
- positron-beam energies: 45 GeV, 46.5 GeV, 49 GeV

# LEMMA testbeam: layout

#### A combination of detectors used to measure the $\mu^{\pm}$ trajectories and energies

Layout of the experimental setup:

August 2018



target Si microstrip Be or C stations

vacuum beam pipe

dipole magnet CAL DT



→ allows to determine efficiency of the external trigger

Nazar Bartosik

# LEMMA testbeam: analysis progress

#### Several calibration runs were performed without a target:

- $\mu$  beam: for alignment of the Calorimeters and DT muon chambers
- e<sup>+</sup> beam: for alignment of the Silicon stations + calibration of the Calorimeters

First version of muon analysis performed: calorimeter information not considered

- reconstructing  $e^+$  and  $\mu^{\pm}$  trajectories and selecting good  $\mu^+\mu^-$  candidate events
  - $\mu^+$  and  $\mu^-$  tracks intersecting inside the magnet



# **LEMMA testbeam:** preliminary results

Reconstructed hits from Silicon stations and DT chambers in a signal event  $\longrightarrow$ (August 19<sup>th</sup>, 2018)

# Reconstructed hit positions in silicon stations before and after the beam pipe

 good agreement with the MC simulation

Nazar Bartosik





#### Muon Collider: Low EMittance Muon Accelerator approach

40

-30

-20

-10

10

20

30

40

mm

# **LEMMA testbeam:** preliminary results

# Silicon stations and DT chambers used for the muon track reconstruction

providing ~6% momentum resolution



#### Significant improvement in 2018 compared to 2017

low statistics due to hardware problems in 2017



Nazar Bartosik

# **LEMMA testbeam:** preliminary results

#### Reconstructed muon kinematics in a good agreement with the MC simulation

![](_page_11_Figure_2.jpeg)

Nazar Bartosik

# LEMMA testbeam: trigger efficiency

DT muon chambers have a trigger-less readout: all channels acquired every 25ns

- can detect  $\mu^{+}\mu^{-}$  events without the external trigger
- similar design considered by the LHCb/CMS/ATLAS for HL-LHC

Each of the 4 chambers contains 64 cells arranged in 4 layers

Measuring time of a charge carrier reaching the wire → reference time *t*<sub>0</sub> needed to convert time to a hit position

A triplet of hits sufficient to determine t₀ (meantimer method) → separate equation for each type of pattern

The determined *t*<sub>0</sub> found to be more precise than the external trigger due to a ~3 ns jitter in the trigger electronics

#### The number of events identified with DT data: ~10K events preliminary

• trigger efficiency: 2% (hardware problems)  $\rightarrow$  20% (problems solved)

Muon Collider: Low EMittance Muon Accelerator approach

![](_page_12_Figure_12.jpeg)

![](_page_12_Figure_13.jpeg)

13

# Summary

A Muon Collider is a promising project that could replace or complement the rather well studied *e*<sup>+</sup>*e*<sup>-</sup> and *pp* collider options

LEMMA is an elegant solution for producing low-emittance muon beams

The LEMMA scheme has been implemented using the *e*<sup>+</sup> beam at CERN

#### A number of open questions remain:

- 1. Can the desired  $\mu^{\pm}$  production rate of ~10<sup>11</sup> be achieved?
- 2. What is the actual *luminosity* vs *emittance* dependence?
- 3. What is the effect of the target material and length on the emittance?

#### The obtained testbeam data is the first step in providing the answers

A lot of work has already been done: experimental setup + data analysis

#### Main ingredients of the analysis chain already in place

 $\rightarrow$  conclusive numerical results are a matter of time + our devoted work