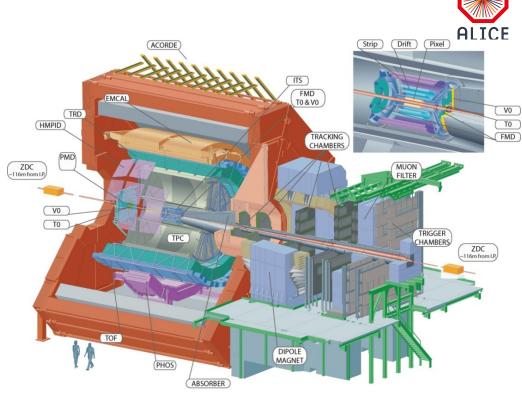

Federico Antinori

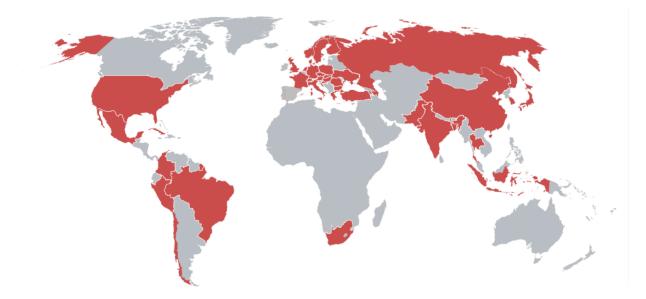
23rd CERN-Korea Committee Meeting CERN, 29 October 2018

Ultrarelativistic Nuclear Collisions

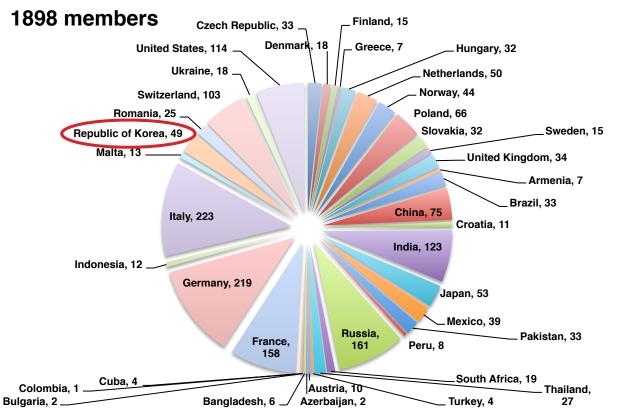

basic idea: compress large amount of energy in small volume

- → produce a "fireball" of hot matter: temperature O(10¹² K)
 - $\sim 10^5 \text{ x T}$ at centre of Sun
 - ~ T of universe @ ~ 10 μs after Big Bang
- extreme conditions: how does matter behave?
 - \rightarrow study the fireball properties
 - deconfined QCD medium(Quark-Gluon Plasma, QGP)
 - predicted by QCD
 - evidence for QGP already at lower energy (CERN-SPS, BNL-RHIC)
 - LHC: high statistics and controlled probes
 - \rightarrow quantitative study of properties of QCD medium
 - viscosity, opacity, transport, diffusion, ...

The ALICE Experiment


- Two main parts:
 - barrel ($|\eta| < 0.9$), B = 0.5 Tesla
 - muon spectrometer, -4<η<-2.5
- High precision reconstruction:
 - low material tracking
 - high res. vertexing
 - hadron and lepton ID
- Triggers:
 - minimum-bias (MB)
 - or centrality, in Pb-Pb
 - single and di-muon
 - EMCAL, high-mult., UPC
 - TRD

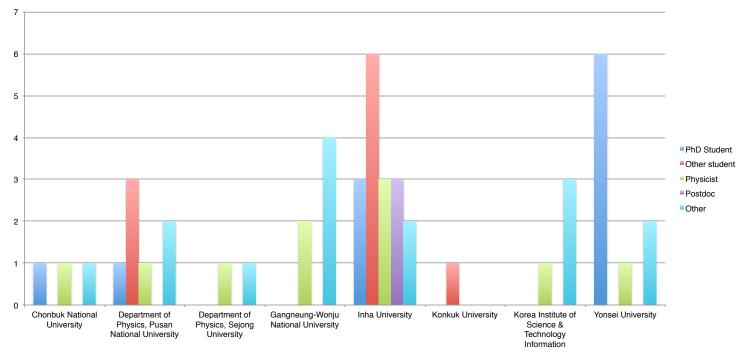
• Collisions systems (so far) : Pb-Pb, pp, p-Pb, Pb-p, Xe-Xe


Participating Institutes 176 INSTITUTES – 41 COUNTRIES

• ongoing discussions with groups in Bolivia, Chile, India, Romania, ...

ALICE

The ALICE Collaboration



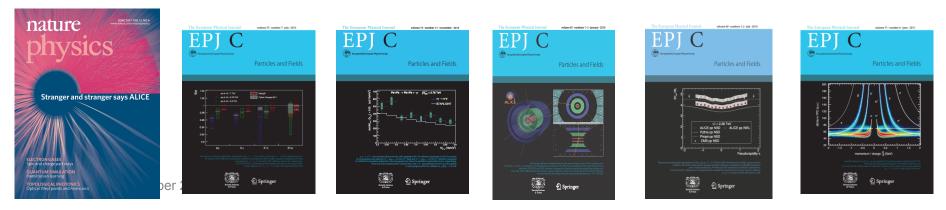
Source: Alice Collaboration data base, October 2018

Republic of Korea in ALICE

49 people, from 9 institutes

Members by institute and by category

FA | CKC | 29 October 2018


Main areas of Korean activity in ALICE

ALICE

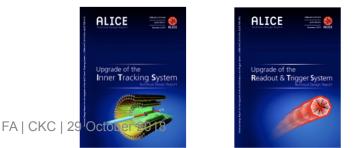
- Inner Tracking System upgrade
 - detection of fast decays close (100's µm) to interaction vertex
- Muon Forward Tracker
 - detection of fast decays in front of the muon spectrometer
- Muon Trigger
 - fast detection of muons \rightarrow trigger the acquisition of data
- Time-Of-Flight detector
 - identification of particle species
- Computing
 - first LHC Tier 1 Computer Centre after LHC start
 - first Tier 1 in Asia!
- Data analysis
 - 16 papers with Korean colleagues as main authors
 - 5 more currently under preparation

ALICE Physics: current status Run 1 (2009-2013) + Run 2 (2015-2018)


- wide-band exploration of QGP features
 - comprehensive study of identified particle production, correlations, jets, ...
- first measurement of mass-dependence of in-medium energy loss
- discovery of new regime for charmonium production in QGP (\rightarrow regeneration)
- discovery of collective effects in p-Pb, pp collisions
- 233 papers on arXiv, several hundred presentations to conferences per year

Data taking in 2018

- Pb-Pb run 2018: stress on central (head-on) collisions → Heavy Flavour!
- largest data set so far \rightarrow ~ 25% ALICE data to date to be collected this year!

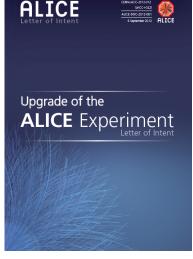

ALICE Physics: upgrades plans

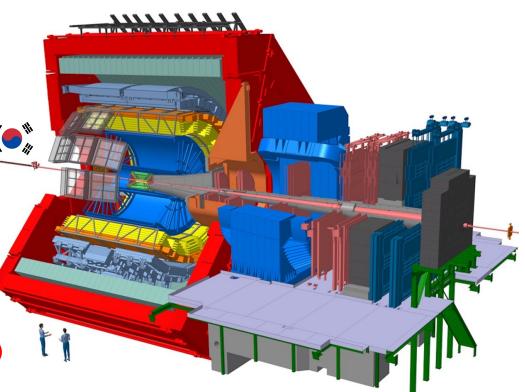
Main physics goals

- study heavy quark interaction in QCD medium
 - \rightarrow heavy flavour dynamics and hadronisation at low p_T
- study charmonium regeneration in QGP

 \rightarrow charmonium down to zero \mathbf{p}_{T}

- chiral symmetry restoration and QGP radiation
 - \rightarrow vector mesons and virtual thermal photons (di-leptons)
- production of nuclei in QGP
 - \rightarrow high-precision measurement

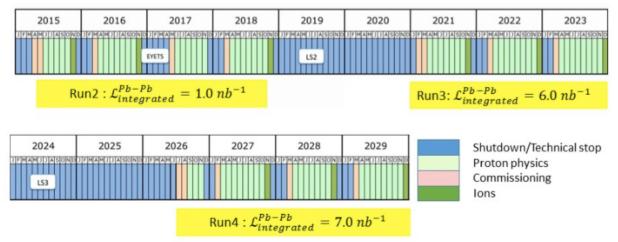




ALICE

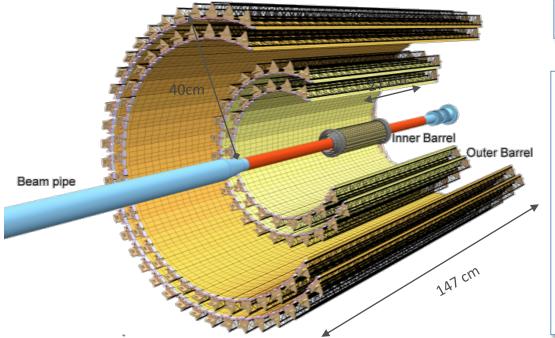
ALICE upgrades

Layout


- New Inner Tracking System (ITS)
 - MAPS: improved resolution, less material, faster readout
- New Muon Forward Tracker (MFT)
 - vertex tracker at forward rapidity
- New TPC Readout Chambers
 - 4-GEM detectors
- New trigger detectors
 - + centrality, event plane
- Upgraded read-out for TOF, TRD, MUON, ZDC, EMCal, PHOS, integrated Online-Offline system (O²)
 - record minimum-bias Pb-Pb data at 50 kHz (currently <1 kHz)

ALICE upgrades

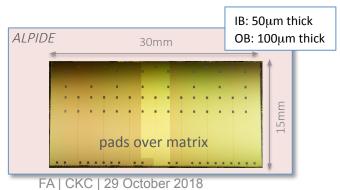
Timeline



- LS2:
 - − LHC injector upgrades, Pb-Pb rate \rightarrow 50 kHz (now ~10 kHz)
 - ALICE upgrades
- Run 3 + Run 4:
 - experiments request > 10/nb (ALICE: 10/nb + 3/nb at 0.2 T)
 - in line with latest projections from machine group

FA | CKC | 29 October 2018

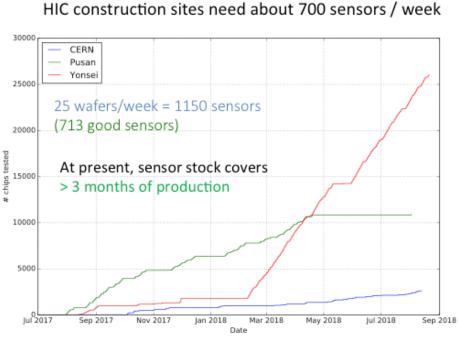
ITS Upgrade



7-layer geometry (23 – 400mm), $|\eta| \le 1.5$) 10 m² active silicon area (12.5 G-pixels) Pixel pitch 28 x 28 μ m² Spatial resolution ~5 μ m Power density < 40mW / cm² Material thickness: ~0.3% / layer (IB) Max particle rate: 100 MHz / cm²

2 x 2 pixel volume 0.3 pJ / bit 0.3 pJ / bit

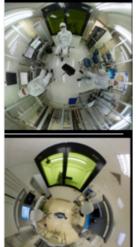
nolithic Pixel Chip


Production Plans

- Number of "good sensors" needed to build the ITS (including spares): 27300
- Number of chips to be produced: 54584 ⇒ 1186 wafers (46 chips/ wafer)

Production Status and Updated Plans

- 1200 wafers produced till Dec 2017
- Overall yield figures turned out to be lower than expected
 ⇒ 45% (Chip + HIC + Stave)
- Production resumed in Jun 2018 will continue till Dec 2018 to reach a total of 1600 wafers (20% contingency)

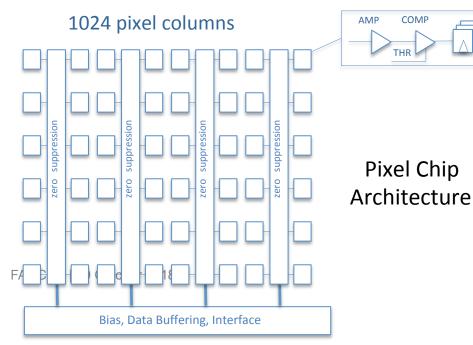

Pixel chip (ALPIDE) production and test flow

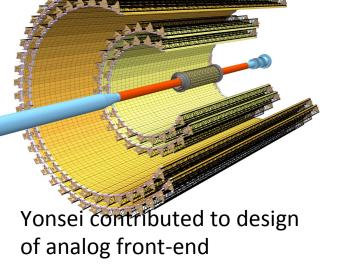
Yonsei

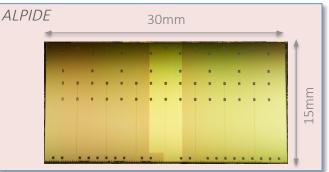
- 100-µm chip testing: running
- Working schedule: 24/7
- Test rate: 26 wafers/week
- Smooth operation

Pusan/Inha

- 100-µm chip testing: done (end-April)
- (switchover to HIC constr.)
- Backup site


CERN


- 50-μm chip testing: running
- wafer testing: done


Yonsei University: Pixel Sensor Chip

- major contribution to development of pixel sens
 - participation in chip design (analog front-end), w
 - participation in chip characterisation

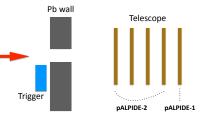
Pixel Sensor Chip

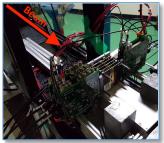
Yonsei University: Pixel Sensor Chip Test

- major contribution to pixel chip series test
 - about 30,000 sensors being tested at Yonsei, (28 wafers/week)

Probe-card developed by Korean companies (NOTICE, EQNG) in close collaboration with Yonsei and CERN

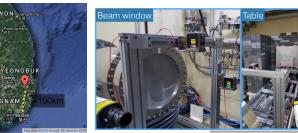
Corea-YS01 (C-ON, Creative On Technology, Korea)


- custom-made automatic test equipment
- developed by C-ON in close collaboration with Yonsei University and CERN

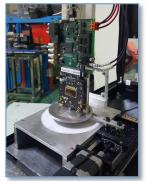

FA | CKC | 29 October 2018

Pusan National University and Inha University

- major contribution to development c
 - characterisation of four generations
 - participation in test beam activities a
 - detailed characterisation with 60 Me
 - Pohang Accelerator Laboratory
 - study of effects of ionising radiation
 IAC (Gyeongiu)



PAL – study of sensor detection efficiency



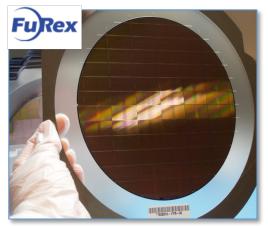
influence of supply voltage, tempe

Experimental set-up at KOMAC FA | CKC | 29 October 2018

PAL – Study of response to inclined tracks 18

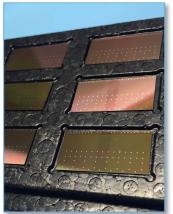
Pusan National University and Inha University

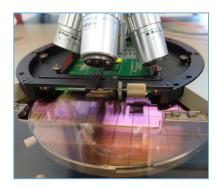
major contribution to detector construction



ITS Outer Barrel HIC. 14 pixel sensor chips are mounted on a flexible printed circuit

- pixel chip series test (~ 30,000 sensors, finishing in April)
- Outer Barrel Module construction (400 modules, started in May 2018)


Large involvement of Korean Industry in the ITS



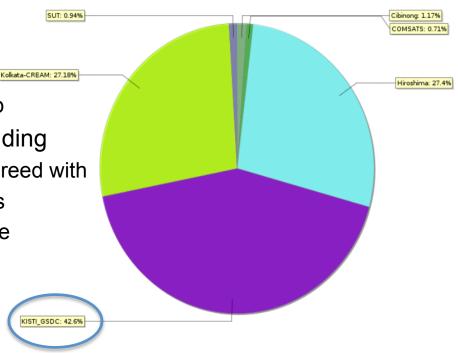
Innofab and Furex

- Thinning & Dicing of silicon sensors wafers
- Thinning of very large sensors (15 x 30 mm²) down to ultralow values (50µm)
- pick & place to custom trays

C-ON: development of custom-made automatic test Equipment for pixel chip series test

NOTICE

NOTICE and EQNG development of probe-card systems


SEJUNG SEMICONDUCTOR

SEJUNG module wire bonding

KISTI for ALICE

- Largest Asian resources contributor for ALICE, provides 14% T1 capacity
- ALICE Tier Center Forum
 - Leading role in the new storage initiative for Run3
 - Continues to be a major network hub
- Moving of all resources to a new building
 - Migration program discussed and agreed with ALICE, minimal impact on operations
 - Good luck an looking forward to more resources!

Conclusions

- collaboration between ALICE and Korea is very healthy
 - physics: new ideas, experienced scientists, excellent students
 - technology: key contributions from Korean industry to ALICE apparatus
 - computing: key provider of computing resources
- the outlook is bright
 - promising young colleagues
 - new technical ideas
- we are very grateful!
 - MoS, NRF, KISTI
 - Korean industrial partners
 - KoALICE and all our Korean colleagues

Run:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb Energy: 5.02 TeV

ALICE