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Outline

 Production and detection of an axion dark
matter echo

with Ariel Arza, arXiv:1902.00114

» Constraints on the Big Flow from the

GAIA skymap

with Sankha Chakrabarty, Anthony Gonzalez
and Yaqi Han, to appear



Stimulated axion decay
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Py = outgoing power

P, = echo power



In the rest frame of a perfectly cold
axion fluid

the echo traces the outgoing power exactly
backward, and lasts forever
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In a perfectly cold axion fluid at rest
¢(t) = ¢g sin(mgt) axion field

1
P = 5 mg ¢(2) axion density
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echo outgoing power
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Resonance occurs when
— W = Mg+ W

ie. w = + mg/2
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In case of a perfectly cold axion fluid moving
with velocity ¢ with respect to the observer:

A

k’ — wk = wavevector of outgoing power
U= V| k+ v,

outgoing
resonance frequency

echo frequency W1
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Collected Echo Power

1 dPO
P.= —g°
167 7 dv
t., = C—— R = radius of receiver
v | dish
g / 2 - S
C RP, dt SOd xr Iy(X)O.(T + UL t)



Two contrasting galactic halo models

* the iIsothermal model
p = 300 MeV /cc ov = 270 km /s
7=—220km/s ¢

* the caustic ring model (L. Duffy & PS, 2008)
has a locally prominent cold flow

PBF "~ (1 to 10) GGV/CC dvgr < 70 m/S
Uar ~ (290 ¢ — 111 # — 19 2) km/s

(preliminary)



For a general velocity distribution
d°p
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= /d v dUS (U)

The echo is spread in frequency
Mg
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and in space
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Assumptions

outgoing energy: 10 MW year per factor of two in
frequency covered

the outgoing power is pulsed (or modulated) on
10 millisec time scale

50 meter receiving dish & 20 K system noise temperature

cold flow with velocity dispersion less than 70 m/s, and
known direction

71| <5 km/s



100 —

0.1}

1072

10

P =03 GeV/ cm3
I [Sot/zerma[ Mode]
KV
P=1 GeV/ Cm3 |
DSz == e e
P =10 GeV/cmS
I Caustic Rz’ng Mode] -
1076 1075 107

m/eV



The Axion Echo Method works better in the
Caustic Ring Model than in the Isothermal
Model for three reasons:

1) the axion density is higher
2) the echo has less spread in frequency
3) the echo has less spread in space

Reason 1) helps the cavity method equally.
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A shell of
particles, part of
a continuous
flow.

The shell has net
angular
momentum.

As the shell falls
in and out of the
galaxy, it turns

itself inside out.
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Sphere turning inside out




simulation by Arvind Natarajan
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The caustic ring cross-section

an elliptic umbilic catastrophe
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Figure 7-22. The giant elliptical galaxy NGC 3923 is surrounded by faint
ripples of brightness. Courtesy of D. F. Malin and the Anglo-Australian

Telescope Board. (from Binney and Tremaine’s book)



Figure 7-23. Ripples like those shown in Figure
7-22 are formed when a numerical disk galaxy is
tidally disrupted by a fixed galaxy-like potential.
(See Hernquist & Quinn 1987.)




On the basis of the self-similar infall model
(Filmore and Goldreich, Bertschinger) With angular
momentum (Tkachev, Wang + PS), the caustic
rings were predicted to be

In the galactic plane
with radii (n-1,2,3..)

40kpC Vrot jmax
dn =
n 220km/s /{ 0.18

j.... =0.18 was expected for the Milky Way
halo from the effect of angular momentum
on the inner rotation curve.




Galactic rotation curves
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Effect of a caustic ring of dark matter upon
the galactic rotation curve
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Rotation curve of Andromeda Galaxy

from L. Chemin, C. Carignan & T. Foster, arXiv: 0909.3846

i

VELOCITY [KM /5]

100

2

I-—'

=
IIIIIIIII|IIIIIIIII|_IIII_IIIII|IIIIIIIII

I--' 'l 'l 'l 'l I 'l 'l 'l 'l I 'l 'l 'l 'l I
0 =20 100 120

RADIUS [ARCMIN]

Fiz. 10— HI rotation curve of Messier 31. Filled diamonds
are for both halves of the disc fitted simultaneously while blue
dow nward /red upward triangles are for the approaching /receding
sides fitted separately (respectively).
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Composite rotation curve
(W. Kinney and PS, astro-ph/9906049)
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« combining data on
32 well measured
extended external

rotation curves

* scaled to our own galaxy
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Monoceros Ring of stars

H. Newberg et al. 2002; B. Yanny et al., 2003; R.A. |Ibata et al., 2003;
H.J. Rocha-Pinto et al, 2003; J.D. Crane et al., 2003; N.F. Martin et al., 2005

in the Galactic plane

at galactocentric distance r ~ 20 kpc
appears circular, actually seen for 100° </ < 270"
scale height of order 1 kpc

velocity dispersion of order 20 km/s

may be caused by the n =2 caustic ring of

dark matter (A. Natarajan & PS, 2007:
S. Chakrabarty & PS, 2018)



Outer Galactic rotation curve
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Inner Galactic rotation curve
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from Massachusetts-Stony Brook North Galactic Pane CO Survey (Clemens, 1985)
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IRAS 12 um
(1,b)=(80°,07) 10° x10°
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IRAS 25 um
(1,b)=(80°,07) 10° x10°




Inner Galactic rotation curve
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from Massachusetts-Stony Brook North Galactic Pane CO Survey (Clemens, 1985)
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GAIA sky map










GAIA sky map
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r = (—2T — A*)(61.5 pc)
z = —2AT(54.6 pc)

Big Flow density:
1
0~ 0.96-10"24 8

cm? |T — A?]



Big Flow velocity components:

km
S
km
S
Preliminary:
To = —9.2 pc 2o = 1.2 pc
pBEF ~ 2.3 Ge\gf x 4
C111

Uer ~ (290 ¢ — 111 # — 19 2) km/s






Conclusions

Dark matter axions can be searched for by sending
out a powerful beam of microwave radiation and
listening for its echo.

The GAIA skymap has triangular features which
may be interpreted as manifestations of a nearby

caustic ring.

Our proximity to the caustic ring implies the
existence on Earth of a Big Flow of dark matter.

The direction on the Big Flow can be derived from
the IRAS and GAIA triangles.



