The Axion Echo Method and the Big Flow

Pierre Sikivie

CERN-Korea TH Institute

Axions in the Laboratory and in the Cosmos

$$
\text { July 15-19, } 2019
$$

Collaborators: Ariel Arza, Sankha Chakrabarty, Anthony Gonzalez, Yaqi Han

Outline

- Production and detection of an axion dark matter echo
with Ariel Arza, arXiv:1902.00114
- Constraints on the Big Flow from the GAIA skymap
with Sankha Chakrabarty, Anthony Gonzalez and Yaqi Han, to appear

Stimulated axion decay

$$
\Gamma(a \rightarrow 2 \gamma) \sim \frac{1}{10^{51} \mathrm{sec}}
$$

$$
\omega=\frac{m_{a}}{2}
$$

$P_{0}=$ outgoing power

$$
P_{1}=\text { echo power }
$$

In the rest frame of a perfectly cold axion fluid
the echo traces the outgoing power exactly backward, and lasts forever
\qquad

$$
\left.\begin{array}{c}
\mathcal{L}_{a \gamma \gamma}=-g \phi(x) \vec{E}(x) \cdot \vec{B}(x) \\
P_{1}=\frac{1}{16} g^{2} \rho \frac{d P_{0}}{d \nu} t \\
=7.8 \times 10^{-29} P_{0}\left(\frac{1}{f_{a}}\right. \\
\cdot\left(\frac{10 \mathrm{kHz}}{\Delta \nu}\right)\left(\frac{g_{\gamma}}{0.36}\right)^{2} . \\
f_{a}
\end{array}\right)^{2}\left(\frac{\rho}{\mathrm{GeV} / \mathrm{cm}^{3}}\right)\left(\frac{t}{1 \mathrm{sec}}\right), ~ l
$$

In a perfectly cold axion fluid at rest

$$
\begin{array}{r}
\phi(t)=\phi_{0} \sin \left(m_{a} t\right) \quad \text { axion fiel } \\
\rho=\frac{1}{2} m_{a}^{2} \phi_{0}^{2} \quad \text { axion density } \\
\left(\partial_{t}^{2}-\nabla^{2}\right) \vec{A}_{1}=-g\left(\vec{\nabla} \times \vec{A}_{0}\right) \partial_{t} \phi \\
\text { echo } \quad \text { outgoing power }
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{r}
\vec{A}_{0}(\vec{x}, t)=\Re \int d^{3} k \vec{A}_{0}(\vec{k}) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \quad(\omega=|\vec{k}|)
\end{array} \\
& \vec{A}_{1}(\vec{x}, t)=\Re \int d^{3} k A_{1}(\vec{k}, t) e^{i \vec{k} \cdot \vec{x}} \\
& \left(\partial_{t}^{2}+\omega^{2}\right) \overrightarrow{A_{1}}(\vec{k}, t)=-g A m_{a} \cos \left(m_{a} t\right) i \vec{k} \times \vec{A}_{0}(\vec{k}) e^{-i \omega t} \\
& \pm \omega \\
& \pm m_{a}+\omega
\end{aligned}
$$

Resonance occurs when

$$
\begin{gathered}
-\omega=m_{a}+\omega \\
\text { i.e. } \omega=+m_{a} / 2 \\
\vec{A}_{0}(\vec{x}, t)=\Re\left[e^{-i \frac{m_{a}}{2} t} \vec{e} \int_{|\vec{k}|=m_{a} / 2} d^{2} k A_{0}(\vec{k}) e^{i \vec{k} \cdot \vec{x}}\right]
\end{gathered}
$$

produces

$$
\overrightarrow{A_{1}}(\vec{x}, t)=+\frac{1}{4} g A m_{a} t \Re\left[e^{i \frac{m_{a}}{2} t} \vec{e} \times \int_{|\vec{k}|=m_{a} / 2} d^{2} k \hat{k} A_{0}(\vec{k}) e^{i \vec{k} \cdot \vec{x}}\right]
$$

Echo power:

$$
P_{1}=\frac{1}{16} g^{2} \rho \frac{d P_{0}}{d \nu} t
$$

$$
\left.\begin{array}{c}
\mathcal{L}_{a \gamma \gamma}=-g \phi(x) \vec{E}(x) \cdot \vec{B}(x) \\
P_{1}=\frac{1}{16} g^{2} \rho \frac{d P_{0}}{d \nu} t \\
=7.8 \times 10^{-29} P_{0}\left(\frac{1}{f_{a}}\right. \\
\cdot\left(\frac{10 \mathrm{kHz}}{\Delta \nu}\right)\left(\frac{g_{\gamma}}{0.36}\right)^{2} . \\
f_{a}
\end{array}\right)^{2}\left(\frac{\rho}{\mathrm{GeV} / \mathrm{cm}^{3}}\right)\left(\frac{t}{1 \mathrm{sec}}\right), ~ l
$$

In case of a perfectly cold axion fluid moving with velocity \vec{v} with respect to the observer:

$$
\vec{k}=\omega \hat{k} \quad=\text { wavevector of outgoing power }
$$

$$
\vec{v}=v_{\|} \hat{k}+\vec{v}_{\perp}
$$

outgoing
resonance frequency

$$
\omega_{0}=\frac{m_{a}}{2}(1+\vec{v} \cdot \hat{k})+\mathcal{O}\left(v^{2}\right)
$$

echo frequency

$$
\omega_{1}=\frac{m_{a}}{2}(1-\vec{v} \cdot \hat{k})+\mathcal{O}\left(v^{2}\right)
$$

Collected Echo Power

$$
P_{c}=\frac{1}{16} g^{2} \rho \frac{d P_{0}}{d \nu} t_{c}
$$

$$
\begin{aligned}
t_{c} & =C \frac{R}{\left|\vec{v}_{\perp}\right|} \quad R=\begin{array}{l}
\text { radius of receiver } \\
\text { dish }
\end{array} \\
C & =\frac{\left|\vec{v}_{\perp}\right|}{2 R P_{0}} \int d t \int_{S_{0}} d^{2} x I_{0}(\vec{x}) \Theta_{c}\left(\vec{x}+\vec{v}_{\perp} t\right)
\end{aligned}
$$

Two contrasting galactic halo models

- the isothermal model

$$
\begin{gathered}
\rho=300 \mathrm{MeV} / \mathrm{cc} \quad \delta v=270 \mathrm{~km} / \mathrm{s} \\
\vec{v}=-220 \mathrm{~km} / \mathrm{s} \hat{\phi}
\end{gathered}
$$

- the caustic ring model (L. Duffy \& PS, 2008) has a locally prominent cold flow

$$
\begin{gathered}
\rho_{\mathrm{BF}} \sim(1 \text { to } 10) \mathrm{GeV} / \mathrm{cc} \quad \delta v_{\mathrm{BF}}<70 \mathrm{~m} / \mathrm{s} \\
\vec{v}_{\mathrm{BF}} \simeq(290 \hat{\phi}-111 \hat{r}-19 \underset{\text { (preliminary })}{\hat{)}) \mathrm{km} / \mathrm{s}}
\end{gathered}
$$

For a general velocity distribution

$$
\rho=\int d^{3} v \frac{d^{3} \rho}{d v^{3}}(\vec{v})
$$

The echo is spread in frequency

$$
\delta \omega_{1}=\frac{m_{a}}{2} \delta v_{\|}
$$

and in space

$$
\delta \vec{x}_{\perp}=\delta \vec{v}_{\perp} t_{e}
$$

Assumptions

- outgoing energy: 10 MW year per factor of two in frequency covered
- the outgoing power is pulsed (or modulated) on 10 millisec time scale
- 50 meter receiving dish \& 20 K system noise temperature
- cold flow with velocity dispersion less than $70 \mathrm{~m} / \mathrm{s}$, and known direction
- $\left|\vec{v}_{\perp}\right|<5 \mathrm{~km} / \mathrm{s}$

The Axion Echo Method works better in the Caustic Ring Model than in the Isothermal Model for three reasons:

1) the axion density is higher
2) the echo has less spread in frequency
3) the echo has less spread in space

Reason 1) helps the cavity method equally.

A shell of

 particles, part of a continuous flow.The shell has net angular momentum.

As the shell falls in and out of the galaxy, it turns itself inside out.
a)

c)

e)

b)

d)

f)

Sphere turning inside out

simulation by Arvind Natarajan

The caustic ring cross-section

D_{-4}
an elliptic umbilic catastrophe

Figure 7-22. The giant elliptical galaxy NGC 3923 is surrounded by faint ripples of brightness. Courtesy of D. F. Malin and the Anglo-Australian Telescope Board.

Figure 7-23. Ripples like those shown in Figure $7-22$ are formed when a numerical disk galaxy is tidally disrupted by a fixed galaxy-like potential. (See Hernquist \& Quinn 1987.)

On the basis of the self-similar infall model (Filmore and Goldreich, Bertschinger) with angular momentum (Tkachev, Wang + PS), the caustic rings were predicted to be
in the galactic plane
with radii $(n=1,2,3 . .$.

$$
a_{n}=\frac{40 \mathrm{kpc}}{n}\left(\frac{\mathrm{v}_{\mathrm{rot}}}{220 \mathrm{~km} / \mathrm{s}}\right)\left(\frac{\mathrm{j}_{\text {max }}}{0.18}\right)
$$

$\mathrm{j}_{\text {max }} \cong 0.18$ was expected for the Milky Way halo from the effect of angular momentum on the inner rotation curve.

Galactic rotation curves

r

rotation speed

Effect of a caustic ring of dark matter upon the galactic rotation curve

Rotation curve of Andromeda Galaxy

from L. Chemin, C. Carignan \& T. Foster, arXiv: 0909.3846

Fig. 10.- Hi rotation curve of Messier 31. Filled diamonds are for both halves of the disc fitted simultaneously while blue downward/red upward triangles are for the approaching/receding sides fitted separately (respectively).

$10 \operatorname{arcmin}=2.2 \mathrm{kpc}$

Composite rotation curve (W. Kinney and PS, astro-ph/9906049)

- combining data on 32 well measured extended external rotation curves
- scaled to our own galaxy

Monoceros Ring of stars

H. Newberg et al. 2002; B. Yanny et al., 2003; R.A. Ibata et al., 2003;
H.J. Rocha-Pinto et al, 2003; J.D. Crane et al., 2003; N.F. Martin et al., 2005
in the Galactic plane
at galactocentric distance $r \sim 20 \mathrm{kpc}$
appears circular, actually seen for $100^{\circ}<l<270^{\circ}$
scale height of order 1 kpc
velocity dispersion of order 20 km/s
may be caused by the $\mathrm{n}=2$ caustic ring of
dark matter (A. Natarajan \& PS, 2007;
S. Chakrabarty \& PS, 2018)

Outer Galactic rotation curve

R.P. Olling and M.R. Merrifield, MNRAS 311 (2000) 361

Inner Galactic rotation curve

from Massachusetts-Stony Brook North Galactic Pane CO Survey (Clemens, 1985)

IRAS

$(1, \mathrm{~b})=\left(80^{\circ}, 0^{\circ}\right)$
 $10^{\circ} \times 10^{\circ}$

IRAS

$(1, \mathrm{~b})=\left(80^{\circ}, 0^{\circ}\right)$
 $10^{\circ} \times 10^{\circ}$

IRAS

$25 \mu \mathrm{~m}$

$$
(1, \mathrm{~b})=\left(80^{\circ}, 0^{\circ}\right) \quad 10^{\circ} \times 10^{\circ}
$$

Inner Galactic rotation curve

from Massachusetts-Stony Brook North Galactic Pane CO Survey (Clemens, 1985)

GAIA sky map

GAIA sky map

$$
\begin{aligned}
& x=\left(-2 T-A^{2}\right)(61.5 \mathrm{pc}) \\
& z=-2 A T(54.6 \mathrm{pc})
\end{aligned}
$$

Big Flow density:

$$
\rho \simeq 0.96 \cdot 10^{-24} \frac{\mathrm{gr}}{\mathrm{~cm}^{3}} \frac{1}{\left|T-A^{2}\right|}
$$

Big Flow velocity components:

$$
\begin{aligned}
v_{x} & =-57 \frac{\mathrm{~km}}{\mathrm{~s}}(1-T) \\
v_{z} & =-50.6 \frac{\mathrm{~km}}{\mathrm{~s}} A
\end{aligned}
$$

Preliminary:

$$
\begin{gathered}
x_{\odot}=-9.2 \mathrm{pc} \quad z_{\odot}=1.2 \mathrm{pc} \\
\rho_{\mathrm{BF}} \sim 2.3 \frac{\mathrm{GeV}}{\mathrm{~cm}^{3}} \times 4 \\
\vec{v}_{\mathrm{BF}} \simeq(290 \hat{\phi}-111 \hat{r}-19 \hat{z}) \mathrm{km} / \mathrm{s}
\end{gathered}
$$

Conclusions

- Dark matter axions can be searched for by sending out a powerful beam of microwave radiation and listening for its echo.
- The GAIA skymap has triangular features which may be interpreted as manifestations of a nearby caustic ring.
- Our proximity to the caustic ring implies the existence on Earth of a Big Flow of dark matter.
- The direction on the Big Flow can be derived from the IRAS and GAIA triangles.

