Higgs portal with an ALP

Kwang Sik JEONG

Pusan National University, Korea

CERN-Korea TH Institute "Axions in the Lab and in the Cosmos" 15-19 July 2019

- SM extension with an ALP
- Higgs portal
 - I. Electroweak hierarchy
 - II. Electroweak baryogenesis
 - III. Freeze-in dark matter
- Summary

Axion-like Particle

Standard Model

Successful up to energy scales around TeV

But need a more fundamental theory to explain

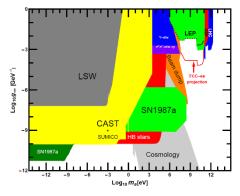
- Baryon asymmetry, dark matter, neutrino oscillations, ...
- Natural EWSB, strong CP problem, flavor structure, unification, cosmic inflation, quantum gravity, ...

- Extension of the SM with an ALP
 - Pseudo Nambu-Goldstone boson
 - Perturbative shift symmetry $U(1)_{\phi}$: $\phi \rightarrow \phi$ +(constant)

$$L = L_{SM} + \frac{1}{2} (\partial \phi)^2 + \frac{\partial_{\mu} \phi}{f} J_{SM}^{\mu} + \frac{1}{32\pi^2} \frac{\phi}{f} F \tilde{F} - V_{NP}(\phi/f)$$

where $f = U(1)_{\phi}$ breaking scale if linearly realized

Light and weakly coupled in the limit of large f


- Extension of the SM with an ALP
 - May address the puzzles of the SM

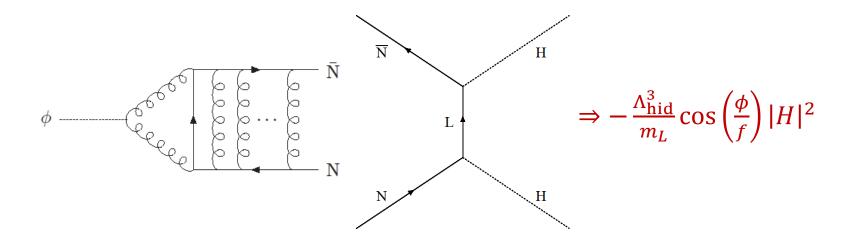
Talk by Jihn E. Kim

- Example: QCD axion anomalously coupled to gluons
 - Natural solution to the strong CP problem
 - Candidate for dark matter Talk by Giovanni Villadoro (misalignment, topological defects)
- Potential to be probed by cosmological, astrophysical and

laboratory observations

Talks by Andreas Ringwald Asimina Arvanitaki David J. E. Marsh Maria Baryakhtar Pierre Sikivie

Jaeckel, Spannowski 2015


Higgs portal

- Higgs portal
 - ALP interacts with the SM via the Higgs field

$$V = \lambda |H|^4 + \mu_H^2(\phi/f)|H|^2 + V_0(\phi/f)$$
portal to a hidden sector

- Interactions: constrained by the periodicity
- Example: $-M^2 \cos\left(\frac{\phi}{f}\right)|H|^2$

- Higgs portal
 - UV completion: hidden QCD under which $U(1)_{\phi}$ is anomalous
 - → Controllable ALP interactions

Higgs portal

- Difference from the conventional Higgs portal
 - Globally, μ_H^2 is bounded both from above and below
 - Locally, $\sum_n c_n M^2 \left(\frac{\phi}{f}\right)^n |H|^2$ with $|c_n| \leq 1$
 - → Certain relations between couplings due to periodicity
- Electroweak symmetry breaking
 - Mixing between the ALP and Higgs boson
 - Higgs decay $h \to \phi \phi$ if the ALP is light

Experimental constraints

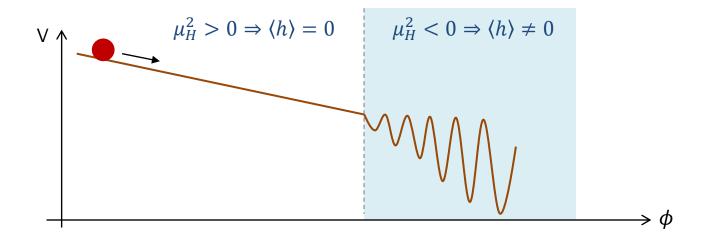
Flacke, Frugiuele, Fuchs, Gupta, Perez 2016 ALP-Higgs mixing Choi, Im 2016 10^{-2} 10^{-4} 10^{-6} $\sin^2 \theta$ NA62 (our estimate) 10^{-8} 10⁻¹⁰ 10⁻¹² 0.001 0.01 0.1 m_{ϕ} [GeV]

• Further constrained if anomalously coupled to gauge bosons

- Why an ALP with Higgs portal?
 - ϕ can play an important role in electroweak phase transition!

Graham, Kaplan, Rajendran 2015

- New approach to the electroweak hierarchy problem
 - Cosmological relaxation of the Higgs boson mass
- Other roles?
 - First order phase transition?
 - Dark matter?


I. Electroweak hierarchy

- Electroweak hierarchy problem
 - Higgs mass: sensitive to unknown UV physics

H----- H
$$\delta m_H^2 \sim {\Lambda_{
m cut}^2 \over 16\pi^2}$$

- Unnatural without new physics around TeV
 - Supersymmetry, extra dimensions, strong dynamics, ...
- LHC experiments
 - No signals for new physics around TeV

- Relaxation mechanism Graham, Kaplan, Rajendran 2015
 - ALP with a Higgs portal: $\mu_H^2(\phi)|H|^2$
 - Cosmological ALP evolution to select the Higgs mass

- ϕ slow-rolls while scanning μ_H^2 from $\Lambda_{\rm cut}^2$ to negative, and stops by barriers formed by EWSB

Relaxation mechanism

Potential

$$V = V_{\text{sliding}}(\phi/f_{\text{eff}}) + \mu_H^2(\phi/f_{\text{eff}})h^2 + V_{\text{barrier}}(\phi/f, h) + \cdots$$

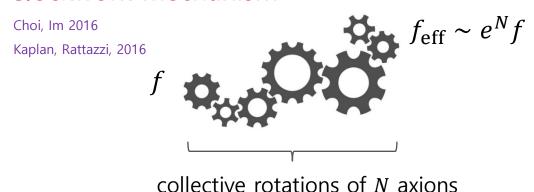
- Sliding:
$$V_{\text{sliding}} = \Lambda_{\text{cut}}^4 \left(-c_1 \frac{\phi}{f_{\text{eff}}} + c_2 \frac{\phi^2}{f_{\text{eff}}^2} + \cdots \right)$$

- Higgs mass-squared:
$$\mu_H^2(\phi) = \Lambda_{\mathrm{cut}}^2 \left(k_0 - k_1 \frac{\phi}{f_{\mathrm{eff}}} + \cdots \right)$$

- Barriers:
$$V_{\text{barrier}}(\phi, h) = -\mu_{\text{br}}^4(h) \cos\left(\frac{\phi}{f}\right)$$

with
$$f_{\rm eff} \gg f$$

Conditions


High enough barriers to stop the ALP

$$\partial_{\phi}V_0 \sim \partial_{\phi}V_{\rm barrier}$$
 at time when $\langle h \rangle \sim v = 174 \, {\rm GeV}$

 \Rightarrow Large hierarchy between F and f

$$\frac{f_{\rm eff}}{f} \sim \left(\frac{\Lambda_{\rm cut}}{\mu_{\rm br}(h=v)}\right)^4 \gg 1$$

Clockwork mechanism

Conditions

Evolution dominated by classical rolling

$$H_{\rm inf} < \left(\partial_{\phi} V_{\rm sliding}\right)^{1/3} \Rightarrow$$
 Hubble scale \leq GeV during inflation

• Scanning of μ_H^2 from $\Lambda_{\rm cut}^2$ to negative

$$N_e > \frac{H_{\rm inf}^2}{\partial_{\phi} V_{\rm sliding}} f_{\rm eff} \Rightarrow \text{Large number of } e\text{-folds}$$

 Need progress to construct a viable inflation model and clarify issues related with low reheating temperature

See e.g. Choi, Kim, Sekiguchi 2016, Evans, Gherghetta, Nagata, Peloso 2017 Son, Ye. You 2018

- Higgs-dependent barrier potential
 - QCD anomaly

$$V_{\text{barrier}}(\phi, h) = -y_u \Lambda_{\text{QCD}}^3 h \cos\left(\frac{\phi}{f}\right)$$

- Too large strong CP phase due to $V_{\rm sliding}$
- Possible solutions

Graham, Kaplan, Rajendran 2015

- Slope of V_{sliding} decreases after inflation
- Slope of V_{barrier} increases after inflation

Nelson, Prescod-Weinstein 2017

- Higgs-dependent barrier potential
 - Hidden QCD anomaly
 - ϕ couples to gauge-invariant operator $|H|^2$

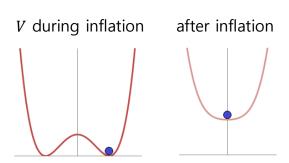
$$V_{\text{barrier}}(\phi, h) = -\Lambda_{\text{hid}}^2 h^2 \cos\left(\frac{\phi}{f}\right)$$

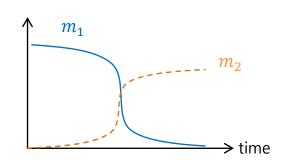
- Coincidence problem
 - Higgs-independent barriers from closing Higgs loops
- Possible solutions

Espinosa, Grojean, Panico, Pomarol, Pujols, Servant 2015

- Multiple ALPs for double scanning

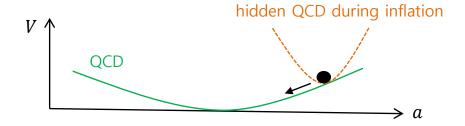
- Peccei-Quinn relaxation ksj, Shin 1709.10025
 - Scheme to avoid the coincidence and strong CP problems
 - Two ALPs anomalously coupled to QCD


$$V = -y_u \Lambda_{\rm QCD}^3 h \cos\left(\frac{\phi}{f} + \frac{a}{f_a}\right) + V_{\rm sw}(a, \phi) + \cdots$$


- Switching potential
 - Large mass to a during inflation, but to ϕ after inflation
 - \Rightarrow During inflation: ϕ selects the Higgs mass After inflation: a selects the strong CP phase

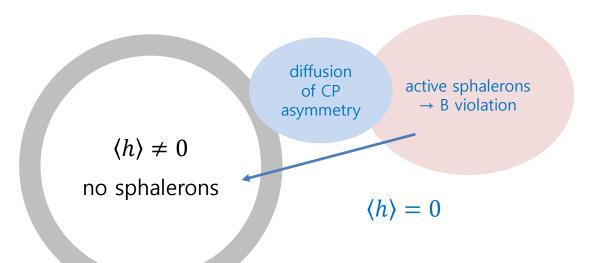
- Peccei-Quinn relaxation
 - Switching potential from two hidden QCDs

$$V_{\rm switch} = m_1 \Lambda_1^3 \cos \left(\frac{a}{f_a}\right) + m_2 \Lambda_2^3 \cos \left(\frac{\phi}{f}\right)$$
 light hidden quark mass confinement scale of hidden QCD


Hidden quark mass from the VEV of a scalar field with an inflaton-dependent potential

Peccei-Quinn relaxation

- Cutoff scale of the Higgs mass $\leq 10^7 \text{GeV} \left(\frac{f}{10^6 \text{GeV}}\right)^{-1/6}$
- Properties of ϕ
 - Heavy as stabilized by hidden QCD after inflation
 - → Reheating temperature above the weak scale
 - No mixing with the Higgs boson as $\theta_{\rm QCD} = \left\langle \frac{a}{f_a} + \frac{\phi}{f} \right\rangle = 0$
- Dark matter from a


II. Electroweak baryogenesis

- Matter-antimatter asymmetry
 - EWPT: Last period affecting baryon asymmetry
 Rapid EW sphaleron transition in symmetric phase
 → B+L violation (but B-L invariant)
 - Baryogenesis
 - Nonzero B-L above EW scale
 e.g. Thermal leptogenesis, Affleck-Dine, ...
 - B+L generation at EW scale and sphaleron decoupling
 - → EWBG

Lots of works since 1985

EWBG

EW bubbles

Requirements

- Strong first-order phase transition to avoid washout SM: crossover if $m_h > 80 \,\, {\rm GeV}$
- Sufficient CP violationSM: CKM and strong CP phases
- → Need BSM

Conventional scenarios

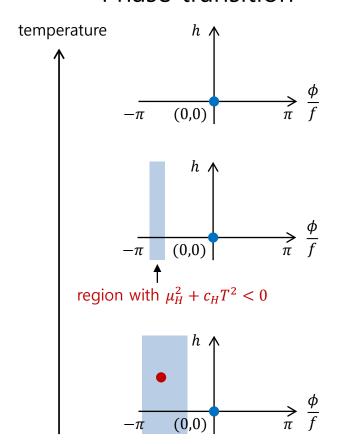
- Strong first-order PT
 - e.g. thermal or effective Higgs cubic term, log potential higher dim operator with low cutoff
 - \rightarrow New particles coupled to H or sizable modification of Higgs sector
- CP violation

Large during baryogenesis but small in present

- Non-local baryogenesis

CP violation in front of wall, B violation away from wall

- LHC (direct searches) and EDM: Probe of EWBG
 - c.f. ACME II constraint on electron EDM

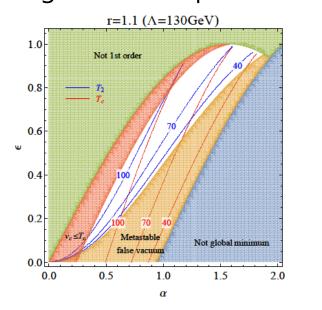

- Higgs portal
 - Potential: $V = \lambda |H|^4 + \mu_H^2(\phi/f)|H|^2 + V_0(\phi/f)$

with
$$\mu_H^2 = \mu^2 - M^2 \cos\left(\frac{\phi}{f} + \alpha\right)$$
 and $V_0 = -\Lambda^4 \cos\left(\frac{\phi}{f}\right)$

- For f much above the weak scale
 - Thermal corrections: $\Delta V_{\rm TH} \simeq c_H T^2 |H|^2$
 - V is a function of $\theta \equiv \frac{\phi}{f}$, and is insensitive to f

EWPT driven by the ALP ksj, Jung, Shin 1806.02591, 1811.03294

Phase transition

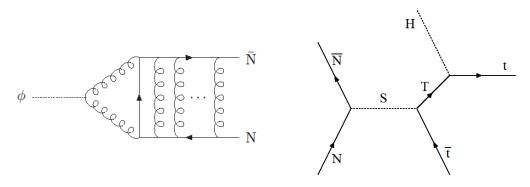


- only a symmetric minimum at $(\phi, h) = (0,0)$ due to V_0 and thermal Higgs mass
- $\mu_H^2 + c_H T^2 > 0$ in the whole range of ϕ because μ_H^2 is bounded from above and below
- minimum at $(\phi, h) = (0,0)$
- $\mu_H^2 + c_H T^2 < 0$ in a finite range of ϕ

- another minimum at $\phi \neq 0$ and $h \neq 0$
- $\mu_H^2 + c_H T^2 < 0$ in a finite but wider range of ϕ
- phase transition when EW minimum gets deeper

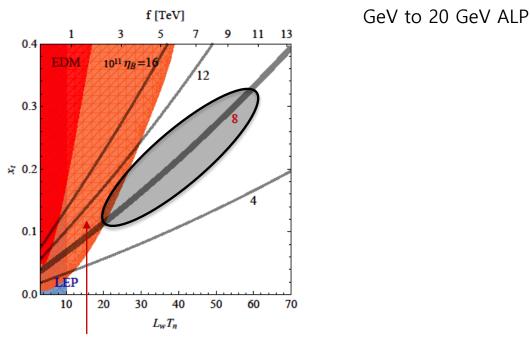
- EWPT driven by the ALP
 - Tunneling mainly along the ALP direction
 - Approximate scaling behaviors
 - Euclidean action of O(3) symmetric critical bubble: $S_3 \propto f^3$
 - Radius of critical bubble: $R_c \propto f$
 - Phase transition
 - Two degenerate minima at T_c : lower than in the SM
 - Bubble nucleation at T_n
 - Barrier disappears at T_2 : close to T_n

- EWPT driven by the ALP
 - Strong first order phase transition: insensitive to *f*



$$\epsilon \equiv \frac{\sqrt{2\lambda}\Lambda^2}{M^2}$$

- Weak coupling limit with $f \gg$ the weak scale
 - Free from EDM and LHC constraints
 - Instead, probable in ALP searches


- EWBG: non-local baryogenesis ksJ, Jung, Shin 1806.02591
 - CP violation from ALP-dependent top quark mass

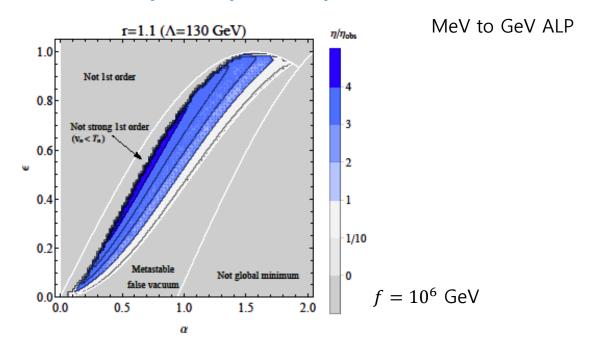
$$Y_t = y_t + x_t e^{i\phi/f}$$

- Baryon asymmetry
 - depends on CP violation x_t , wall width L_w , wall velocity v_w
 - diffusion effect: sizable for $L_w T_n \le 100 \rightarrow \text{upper bound on } f$

- EWBG: non-local baryogenesis
 - Correct baryon asymmetry for $3\text{TeV} \le f \le 10\text{TeV}$

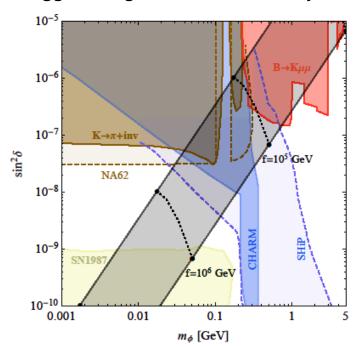
ACME II: about 10 times stronger than ACME I

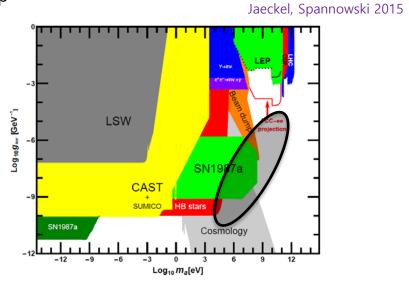
- EWBG: local baryogenesis ksj, Jung, Shin 1811.03294
 - CP violation from ALP-dependent EW Θ-term


$$\frac{\phi}{f}W\widetilde{W} \rightarrow \frac{d\phi}{dt}$$
 = chemical potential for Chern-Simons number

- Simultaneous B and CP violations across walls (thick for large f)
 - → B generation through EW anomaly

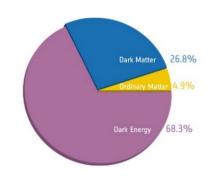
$$\frac{dn_B}{dt} \approx \boxed{\frac{3}{2} \frac{\Gamma_{\rm sph}}{T} \frac{d}{dt} \frac{\phi}{f}} - \frac{39}{4} \frac{\Gamma_{\rm sph}}{T} n_B$$


$$\uparrow$$
sphaleron-induced washout


- EWBG: local baryogenesis
 - ALP evolution after tunneling
 - Thermal dissipation due to ϕ -h mixing: upper bound on f
 - Correct baryon asymmetry for $10^5 \text{GeV} \le f \le 10^7 \text{GeV}$

- How to probe the ALP driving EWBG?
 - ALP at MeV-GeV (local) or GeV-20GeV (non-local)
 - ALP window without strong theoretical interests so far

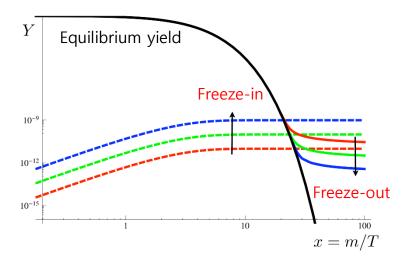
ALP-Higgs mixing: rare B-meson decays, beam dump


anomalous ALP couplings to gauge bosons: optional

III. Freeze-in dark matter

WIMP dark matter

Relic abundance from freeze-out


$$\Omega_\chi \propto rac{m_\chi}{T_f} rac{1}{\langle \sigma v \rangle}$$
 with $\langle \sigma v \rangle \sim rac{\lambda^2}{m_\chi^2}$

- \Rightarrow Observed DM density if $\lambda \sim 0.1$ and $m_\chi \sim 100 {\rm GeV}$
- Well-motivated, natural, experimentally testable, ...
- No signals for new physics at LHC
 Null results from direct & indirect DM detection searches
- May need to go beyond WIMP

McDonald 2001, Choi, Roszkowski 2005, Petraki, Kusenko 2007

- Freeze-in DM Hall, Jedamzik, March-Russell, West 2009
 - Alternative to freeze-out
 - Never in thermal equilibrium: feeble coupled to SM
 - Produced via thermal freeze-in

2-2 scattering, decay of thermal particles

- Freeze-in DM
 - Relic abundance assuming negligible initial density

$$\Omega_{\chi} \propto m_{\chi} \frac{\lambda^2}{m}$$

m: mass of thermal particle responsible for production

- \Rightarrow Observed DM abundance if $\lambda \sim 10^{-12}$ and $m_\chi \sim 100 {\rm GeV}$
- Need an explanation for $\lambda \ll 1!$

Gravitino, axino in SUSY (many works)
Clockwork FIMP, Mohan and Sengupta 2018

- Higgs portal KSJ, Im 1907.xxxxx
 - ALP interacting with the SM ONLY via Higgs portal

$$V = \lambda |H|^4 + \left(\mu^2 - M^2 \cos\left(\frac{\phi}{f}\right)\right) |H|^2 - \frac{1}{16\pi^2} M^2 \Lambda^2 \cos\left(\frac{\phi}{f}\right)$$

$$\uparrow$$
closing Higgs loops

- CP conserving minimum $\phi=0$ (no ALP-Higgs mixing) Stable due to Z_2 symmetry $\phi\to-\phi$ Feebly coupled to SM thermal bath for large f
 - → Natural framework for freeze-in DM!

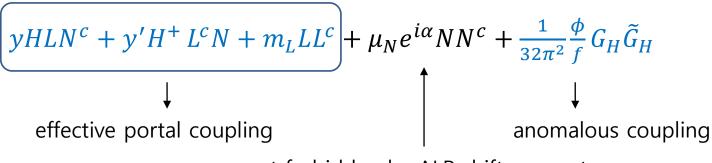
ALP DM

- If thermalized, it overcloses the universe in most of parameter space satisfying the bound on DM scattering with nuclei
- Never in thermal equilibrium for $\lambda_{h\phi} < 10^{-7}$
 - Mass mainly from closing Higgs loops: $m_{\phi} \simeq \frac{1}{4\pi} \frac{M}{f} \Lambda$
- Portal coupling: $\frac{\lambda_{h\phi}}{4}h^2\phi^2 + \frac{\lambda_{h\phi}v}{2}h\phi^2$ with $\lambda_{h\phi} = \left(\frac{M}{f}\right)^2$ freeze-in production by $hh \to \phi\phi$

by $h \rightarrow \phi \phi$ (dominant if open)

ALP DM

- Correct DM density
 - Higgs decay

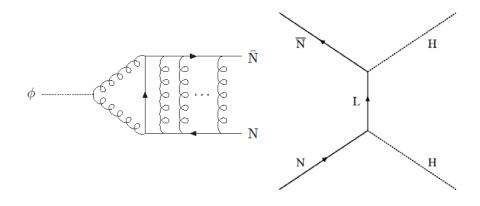

$$\lambda_{h\phi} \simeq 10^{-10} imes \sqrt{rac{3 ext{MeV}}{m_{\phi}}} \quad ext{and} \ m_{\phi} \simeq 1 ext{MeV} imes \left(rac{\Lambda}{10^3 ext{GeV}}
ight)^{rac{4}{5}}$$

- Higgs annihilation

$$\lambda_{h\phi} \simeq 10^{-11}$$
 and $m_{\phi} \simeq 380 {
m GeV} imes \left(\frac{\Lambda}{10^9 {
m GeV}} \right)$

- ALP heavier than MeV for Λ above TeV
- Coherent oscillations: negligible if $T_{\rm osc}\gg 10^6\times m_\phi$

- UV completion: non-perturbative portal
 - Vector-like lepton doublets $L + L^c$ and singlets $N + N^c$ charged under hidden QCD confining at $\Lambda_{\rm hid}$


not forbidden by ALP shift symmetry

in the basis where all the parameters are real

- UV completion: non-perturbative portal
 - Lepton singlet lighter than the confinement scale

$$V_{\rm eff} \ni -M^2 \cos \left(\frac{\phi}{f}\right) |H|^2 - \frac{1}{16\pi^2} M^2 \Lambda^2 \cos \left(\frac{\phi}{f}\right) - \mu_N \Lambda_{\rm hid}^3 \cos \left(\frac{\phi}{f} + \alpha\right)$$

with
$$M^2 = yy' \frac{\Lambda_{
m hid}^3}{m_L}$$
 and $\Lambda \sim m_L$

should be suppressed:

ALP-Higgs mixing for $\alpha \neq 0$

- UV completion: non-perturbative portal
 - Viable model
 - supersymmetry + spontaneously broken $U(1)_X$
 - m_L from superpotential, while μ_N from Kaehler potential

$$\mu_N = \frac{m_{\rm susy}}{M_{Pl}} m_L$$

- ALP-Higgs mixing: ALP is a decaying DM
 - \rightarrow Upper bound on $m_{\rm susy}$ to make ALP cosmologically stable

UV completion: radiative portal

Gupta, Komargodski, Perez, Ubaldi 2015

• Vector-like lepton doublets $L + L^c$ and singlet N

$$\begin{array}{c|c} \hline m_L L L^c + y e^{i\phi/f} H L N + y' H^+ L^c N \\ \downarrow \\ \text{effective portal coupling} \end{array} + \frac{1}{2} \mu_{\text{S}} e^{i(\phi/f + \alpha)} N N$$

not forbidden by ALP shift symmetry

with small $U(1)_{\phi}$ breaking: $\frac{1}{2}\mu_{sb}NN$

in the basis where all the parameters are real

- UV completion: radiative portal
 - ALP potential at loop and proportional to $\mu_{\rm sb}$

$$\begin{split} V_{\rm eff} &\ni -M^2 \cos\left(\frac{\phi}{f}\right) |H|^2 - \frac{M^2\Lambda^2}{16\pi^2} \cos\left(\frac{\phi}{f}\right) - \frac{\mu_{\rm sb}\mu_{\rm s}\Lambda^2}{16\pi^2} \cos\left(\frac{\phi}{f} + \alpha\right) \\ &\text{with } M^2 = \frac{yy'}{16\pi^2} \mu_{\rm sb} \, m_L \ln\left(\frac{\Lambda^2}{m_L^2}\right) \\ &\text{should be suppressed if } \alpha \neq 0 \end{split}$$

Higgs-independent ALP potentials: UV sensitive

- UV completion: radiative portal
 - Viable model
 - supersymmetry + spontaneously broken $U(1)_X$
 - m_L from superpotential, while $\mu_{
 m s}$ from Kaehler potential

$$\mu_S = y \frac{m_{\text{susy}}}{M_{Pl}} m_L$$

- ALP decays due to ALP-Higgs mixing
 - Longevity condition is insensitive to $m_{
 m susy}$ but constrains M and m_{ϕ}

Summary

❖ An ALP coupled to the SM via a Higgs portal

- May give information on the origin of EWSB
- May solve the SM puzzles
 - electroweak hierarchy: cosmological relaxation
 - matter-antimatter asymmetry: EW baryogenesis
 - dark matter: freeze-in

Thank you!