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• extremely light bosons having galaxy-sized de Broglie wavelength  

• most interesting range to solve small-scale structure problems is 
m ~ 10-22 to 10-21 eV — larger masses are OK but look like CDM

• many particles in the same state so the dark matter can be 
described as a classical scalar field satisfying the Schrödinger-
Poisson equations

“classical” ⇒ Planck’s constant enters the equations only as 
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• extremely light bosons having galaxy-sized de Broglie wavelength  
• most interesting range is m ~ 10-22 to 10-21 eV
• can be described as a classical scalar field satisfying the 

Schrödinger-Poisson equations
• simplest models have negligible self-interaction on scales ≳ 1 pc
• the dynamics is identical to CDM on large scales (>> de Broglie 

wavelength), while the Heisenberg uncertainty principle suppresses 
small-scale structure

• therefore fuzzy dark matter might reduce or resolve alleged problems 
with CDM on small scales if the mass m is tuned to do so 
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Fuzzy dark matter has MORE small-scale 
structure than cold dark matter



The small-scale structure in a CDM halo 
• is composed of bound sub-halos
• gradually disappears as the sub-halos are disrupted by tidal forces

The small-scale structure in an FDM halo
• arises from a set of traveling waves with random phases that is band-

limited at k ~ 2π/λ 
• can be thought of as arising from quasi-particles of mass  ~ρ(λ/2π)3 

• lasts forever

Fuzzy dark matter has MORE small-scale 
structure than cold dark matter
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Relaxation due to collisions between classical particles in a homogeneous 
system is described by the Boltzmann equation:

∂t f (p1) = ∫ dp2dp3dp4 S(p1, p2, p3, p4)

× {f (p3)f (p4)[1 + ϵh3f (p1)][1 + ϵh3f (p2)] − f (p1)f (p2)[1 + ϵh3f (p3)][1 + ϵh3f (p4)]}

∂t f(p1) = ∫ dp2dp3dp4 S(p1, p2, p3, p4)[f(p3)f(p4) − f(p1)f(p2)]

where p is momentum, f(p) is the distribution function in momentum 
space, and S describes the transition probability or cross-section.

The quantum-mechanical generalization of the Boltzmann equation is the 
Uehling-Uhlenbeck (1933) equation:

where ε = 0 for classical particles, +1 for bosons, -1 for fermions
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where ε = 0 for classical particles, +1 for bosons, -1 for fermions

This can be derived rigorously if f(p) is defined as the Wigner (1932) 
distribution function

f (r, v, t) =
1

(2π)3 ∫ ds ψ(r+ 1
2 ℏs/m, t) ψ*(r− 1

2 ℏs/m, t)e−iv⋅s



∂t f (p1) = ∫ dp2dp3dp4 S(p1, p2, p3, p4)

× {f (p3)f (p4)[1 + ϵh3f (p1)][1 + ϵh3f (p2)] − f (p1)f (p2)[1 + ϵh3f (p3)][1 + ϵh3f (p4)]}

The quantum-mechanical generalization of the Boltzmann equation is the 
Uehling-Uhlenbeck (1933) equation:

where ε = 0 for classical particles, +1 for bosons, -1 for fermions

For FDM, ε = 0 and h3f(p) >> 1 so

∂t f (p1) = h3 ∫ dp2dp3dp4 S(p1, p2, p3, p4)

× [f (p3)f (p4)f (p1) + f (p3)f (p4)f (p2) − f (p1)f (p2)f (p3) − f (p1)f (p2)f (p4)]

Levkov + (2018), Bar-Or + (2019b)



For a halo having a Maxwellian distribution function with density ρ and 
one-dimensional velocity dispersion σ, the relaxation time is

trelax ≃ 0.34
σ3

G2mρ log Λ
if the halo is composed of 
classical particles of mass m

trelax ≃ 0.34
σ3

eff

G2meff ρ log Λ
if the halo is composed of FDM

where σeff =
σ

√2
meff = ρ( fλ)3 where λ =

h
mσ

, f =
1

2π1/2
= 0.28

meff = ≃ 1 × 107M⊙ ( 1  kpc
r )

2

( 200 km s−1

vcirc ) ( 10−22 eV
m )

3

.

Bar-Or + (2019b)



Interesting question #1:   does FDM stall the inspiral of supermassive black 
holes when they reach equipartition with the quasiparticles?

meff = ≃ 1 × 107M⊙ ( 1  kpc
r )

2

( 200 km s−1

vcirc ) ( 10−22 eV
m )

3

.

Arzoumanian + (2018)



Interesting question #2:   is FDM 
consistent with the long, smooth 
tidal streams observed in the 
halo?



Interesting question #3:   does relaxation from an FDM halo thicken 
galactic disks?

• answer depends strongly on whether the vertical energy input from 
FDM fluctuations is dumped locally or propagated away as bending 
waves in the disk

• if dumped locally, FDM heating may dominated the evolution of the 
disk thickness (Church + 2019)

• if propagated away the thickening is negligible in the solar 
neighborhood but may be significant at smaller radii (Hui + 2017)



Interesting question #4:   is an FDM halo responsible for the non-
equilibrium structure seen in the local Milky Way disk?

• Gaia provides plenty of evidence for recent perturbations to the 
vertical structure of the local disk, e.g., the Gaia snail (Antoja + 2018)

• these are unlikely to be due to CDM sub-halos as these are mostly 
destroyed at the distance of the Sun (Kelley + 2019)



• all excited states of Schrödinger-Poisson equations are unstable — lose 
energy by emitting mass rather than photons. Thus 

- isolated CDM halo survives forever
- isolated FDM halo always eventually collapses to a soliton

The rate is probably governed by the relaxation time 

⇒ centers of FDM halos will condense into ground state, a.k.a. soliton; outer 
parts will behave like CDM

Interesting question #5:   how is relaxation related to the 
formation of central solitons?



• the soliton is the ground state of the Schrödinger-Poisson equations 
(Kaup 1968, Ruffini & Bonazzola 1969) 

Fuzzy dark matter 

• solutions form a one-parameter 
family of equilibrium bound 
systems. Central density and half-
mass radius depend on mass M as
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• the soliton is the ground state of the Schrödinger-Poisson equations 
(Kaup 1968, Ruffini & Bonazzola 1969) 

Fuzzy dark matter 

• solutions form a one-parameter 
family of equilibrium bound 
systems. Central density and half-
mass radius depend on mass M as

empirical fit

radius decreases 
as mass increases

ρ ∝ M4

r1/2 ∝ 1/M



Relaxation in FDM

• centers of FDM halos will condense into solitons; outer parts will behave 
like CDM

• at low masses (small velocities and radii) the soliton occupies most of 
the halo

• at high masses (large velocities and radii) the soliton is much smaller and 
denser than the halo

• from numerical simulations (Schive + 2014)

which implies peak rotation speed in soliton = peak rotation speed in halo 
(Bar + 2018)

S
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Summary

• relaxation in an FDM halo can be described by the Uehling-Uhlenbeck 
equation

- leads to a modified Fokker-Planck equation in which the collision term is 
cubic, rather than quadratic, in the distribution function

- behavior is identical to the behavior of classical particles in a halo with 
effective dispersion σeff = σ/√2 and mass meff = ρ (fλ)3 where f=0.28 
and λ is the de Broglie wavelength at velocity σ

• many unanswered questions:
- does FDM stall the inspiral of supermassive black holes? 
- is FDM consistent with the long, smooth tidal streams observed in the 

halo?
- does relaxation from an FDM halo thicken galactic disks?
- what is the relation of relaxation to the formation of central solitons?


