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Fuzzy dark matter

e extremely light bosons having galaxy-sized de Broglie wavelength
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e most interesting range to solve small-scale structure problems is
m ~ 1022 to 10-2! eV — larger masses are OK but look like CDM
e many particles in the same state so the dark matter can be
described as a classical scalar field satisfying the Schrodinger-
Poisson equations
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“classical” = Planck’s constant enters the equations only as 7/m
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Fuzzy dark matter

* extremely light bosons having galaxy-sized de Broglie wavelength

* most interesting range is m ~ 10-22 to 10-2! eV

* can be described as a classical scalar field satisfying the
Schrodinger-Poisson equations

* simplest models have negligible self-interaction on scales = | pc

* the dynamics is identical to CDM on large scales (>> de Broglie
wavelength), while the Heisenberg uncertainty principle suppresses
small-scale structure

* therefore fuzzy dark matter might reduce or resolve alleged problems
with CDM on small scales if the mass m is tuned to do so



Fuzzy dark matter

* extremely light bosons having galaxy-sized de Broglie wavelength

* most interesting range is m ~ 10-22 to 10-2! eV

* can be described as a classical scalar field satisfying the
Schrodinger-Poisson equations

* simplest models have negligible self-interaction on scales = | pc

* the dynamics is identical to CDM on large scales (>> de Broglie
wavelength), while the Heisenberg uncertainty principle suppresses
small-scale structure

* therefore fuzzy dark matter might reduce or resolve alleged problems
with CDM on small scales if the mass m is tuned to do so

Fuzzy dark matter has MORE small-scale

structure than cold dark matter



Fuzzy dark matter has MORE small-scale

structure than cold dark matter

The small-scale structure in a CDM halo
* is composed of bound sub-halos
* gradually disappears as the sub-halos are disrupted by tidal forces

The small-scale structure in an FDM halo
* arises from a set of traveling waves with random phases that is band-
limited at k ~ 2TT/A

* can be thought of as arising from quasi-particles of mass ~p(A/21T)3
* lasts forever
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Relaxation due to collisions between classical particles in a homogeneous
system is described by the Boltzmann equation:

0,f(p)) = Jdpzdpgdm Sy o7 o [ — )

where p is momentum, f(p) is the distribution function in momentum
space, and S describes the transition probability or cross-section.

The quantum-mechanical generalization of the Boltzmann equation is the
Uehling-Uhlenbeck (1933) equation:

0,f(py) = [dpzdpgdm S(py, Py P3-Pa)

X {f(pf (P )IL + R (pPILL + el’f (p)] = F(pf (P + e f(p)ILL + eh’f(py)]}

where € = 0 for classical particles, +1 for bosons, -1 for fermions
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The quantum-mechanical generalization of the Boltzmann equation is the
Uehling-Uhlenbeck (1933) equation:

d,f(py) = Jdpzdpadm S(p1»> P2 D3 Ps)
X {f(pg)f(m)[l + eh f(p)IIL + er’f(py)] — f(pf (P)I] + er* f(p)I[1 + €h3f(p4)]}

where € = 0 for classical particles, +1 for bosons, -1 for fermions

This can be derived rigorously if f(p) is defined as the Wigner (1932)
distribution function
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The quantum-mechanical generalization of the Boltzmann equation is the
Uehling-Uhlenbeck (1933) equation:

J.f(py) = ‘dpzdpgdm S(p1>P2> P3>Ps)

X {f(p)f (P + eR*f(p)IIL + eh*f(p)] — F(p)f (P)IL + el*f(py)II1 + eh*f(py]}

where € = 0 for classical particles, +1 for bosons, -1 for fermions

For FDM, € = 0 and h3f(p) >> | so

o0,f(p) = h’ Jdpzdpgdm S(p1> P2» D3> Pa)

X [f (P (P)f(p1) + f(p)f (P (P2) — F(p)f (p)f (p3) — F(p)f(P2)f (P4)]

Levkov + (2018), Bar-Or + (2019b)



For a halo having a Maxwellian distribution function with density p and
one-dimensional velocity dispersion O, the relaxation time is

3

i ~034 o if the halo is composed of
relax = G2mp log A classical particles of mass m
3
¢ ~0.34 Octf if the halo is composed of FDM
relax szeffp 10g A
o 3 h 1
where o4 =—— mye = p(fA)° where 1=— f= = 0.28
V2 mo D

1 kpe\> -1 26y’

- pc 200 km s 107““ eV

meff =~ 11X 10 M@ .
r Veire m

Bar-Or + (2019b)



2 -1 ) ®
. 1 kpc 200 km s 107““ eV
meffzzlxlOM@ — 1.
r Veire m

Interesting question #1: does FDM stall the inspiral of supermassive black
holes when they reach equipartition with the quasiparticles?

)

Pessimistic [e.g. Sesana et al. (2016)]

Optimistic [e.g. McWilliams et al. (2014)]
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Interesting question #2: is FDM
consistent with the long, smooth
tidal streams observed in the

halo!?




Interesting question #3: does relaxation from an FDM halo thicken
galactic disks!?

* answer depends strongly on whether the vertical energy input from
FDM fluctuations is dumped locally or propagated away as bending
waves in the disk

* if dumped locally, FDM heating may dominated the evolution of the
disk thickness (Church + 2019)

* if propagated away the thickening is negligible in the solar
neighborhood but may be significant at smaller radii (Hui + 2017)



Interesting question #4: is an FDM halo responsible for the non-
equilibrium structure seen in the local Milky Way disk!?

* Gaia provides plenty of evidence for recent perturbations to the
vertical structure of the local disk, e.g., the Gaia snail (Antoja + 2018)

* these are unlikely to be due to CDM sub-halos as these are mostly
destroyed at the distance of the Sun (Kelley + 2019)




Interesting question #5: how is relaxation related to the
formation of central solitons!?

* all excited states of Schrodinger-Poisson equations are unstable — lose

energy by emitting mass rather than photons. Thus
- isolated CDM halo survives forever
- isolated FDM halo always eventually collapses to a soliton

The rate is probably governed by the relaxation time
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= centers of FDM halos will condense into ground state, a.k.a. soliton; outer
parts will behave like CDM




Fuzzy dark matter

* the soliton is the ground state of the Schrodinger-Poisson equations
(Kaup 1968, Ruffini & Bonazzola 1969)
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radius decreases
as mass increases
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Relaxation in FDM

e centers of FDM halos will condense into solitons; outer parts will behave
like CDM
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* at low masses (small velocities and radii) the soliton occupies most of
the halo

e at high masses (large velocities and radii) the soliton is much smaller and
denser than the halo

* from numerical simulations (Schive + 2014)
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which implies peak rotation speed in soliton = peak rotation speed in halo
(Bar + 2018)
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which implies peak rotation speed in soliton = peak rotation speed in halo



Summary

* relaxation in an FDM halo can be described by the Uehling-Uhlenbeck
equation
- leads to a modified Fokker-Planck equation in which the collision term is
cubic, rather than quadratic, in the distribution function
- behavior is identical to the behavior of classical particles in a halo with
effective dispersion Oeft = 0/+/2 and mass me = p (fA)3 where f=0.28
and A is the de Broglie wavelength at velocity o
* many unanswered questions:
- does FDM stall the inspiral of supermassive black holes!?
- is FDM consistent with the long, smooth tidal streams observed in the
halo?
- does relaxation from an FDM halo thicken galactic disks?
- what is the relation of relaxation to the formation of central solitons?



