Relaxation and evolution in fuzzy dark matter halos

Relaxation and evolution in fuzzy dark matter halos

• extremely light bosons having galaxy-sized de Broglie wavelength

$$\frac{\lambda}{2\pi} = \frac{\hbar}{mv} = 1.9 \,\text{kpc} \frac{10^{-22} \,\text{eV}}{m} \frac{10 \,\text{km s}^{-1}}{v}$$

- most interesting range to solve small-scale structure problems is $m \sim 10^{-22}$ to 10^{-21} eV larger masses are OK but look like CDM
- many particles in the same state so the dark matter can be described as a classical scalar field satisfying the Schrödinger-Poisson equations

$$-\frac{\hbar^2}{2m}\nabla^2\psi + m\Phi(\mathbf{x})\psi = i\hbar\frac{\partial\psi}{\partial t}, \qquad \nabla^2\Phi = 4\pi G|\psi|^2.$$

"classical" \Rightarrow Planck's constant enters the equations only as \hbar/m

extremely light bosons having galaxy-sized de Broglie wavelength

$$\frac{\lambda}{2\pi} = \frac{\hbar}{mv} = 1.9 \,\text{kpc} \frac{10^{-22} \,\text{eV}}{m} \frac{10 \,\text{km s}^{-1}}{v}$$

• most interesting range to solve small-scale structure problems is $m \sim 10^{-22}$ to 10^{-21} eV — larger Widrow & Kaiser (1993)

many particles in the same state Sin (1994)
 described as a classical scalar fit Goodman (2000)
 Poisson equations

Schive Chivel &

$$-rac{\hbar^2}{2m}
abla^2\psi+m\Phi(\mathbf{x})\psi=i\hbarrac{\partial\psi}{\partial t}$$
 Hozek, Grin, Marsh (2016) Hui + (2017)

Goodman (2000)
Hu, Barkana & Gruzinov (2000)
Schive, Chiueh & Broadhurst (2014)
Hlozek, Grin, Marsh & Ferreira (2015)
Marsh (2016)
Hui + (2017)

"classical" \Rightarrow Planck's constant enters the equations only as \hbar/m

- extremely light bosons having galaxy-sized de Broglie wavelength
- most interesting range is m ~ 10-22 to 10-21 eV
- can be described as a classical scalar field satisfying the Schrödinger-Poisson equations
- simplest models have negligible self-interaction on scales ≥ 1 pc
- the dynamics is identical to CDM on large scales (>> de Broglie wavelength), while the Heisenberg uncertainty principle suppresses small-scale structure
- therefore fuzzy dark matter might reduce or resolve alleged problems with CDM on small scales if the mass m is tuned to do so

- extremely light bosons having galaxy-sized de Broglie wavelength
- most interesting range is m ~ 10-22 to 10-21 eV
- can be described as a classical scalar field satisfying the Schrödinger-Poisson equations
- simplest models have negligible self-interaction on scales ≥ 1 pc
- the dynamics is identical to CDM on large scales (>> de Broglie wavelength), while the Heisenberg uncertainty principle suppresses small-scale structure
- therefore fuzzy dark matter might reduce or resolve alleged problems with CDM on small scales if the mass m is tuned to do so

Fuzzy dark matter has MORE small-scale structure than cold dark matter

Fuzzy dark matter has MORE small-scale structure than cold dark matter

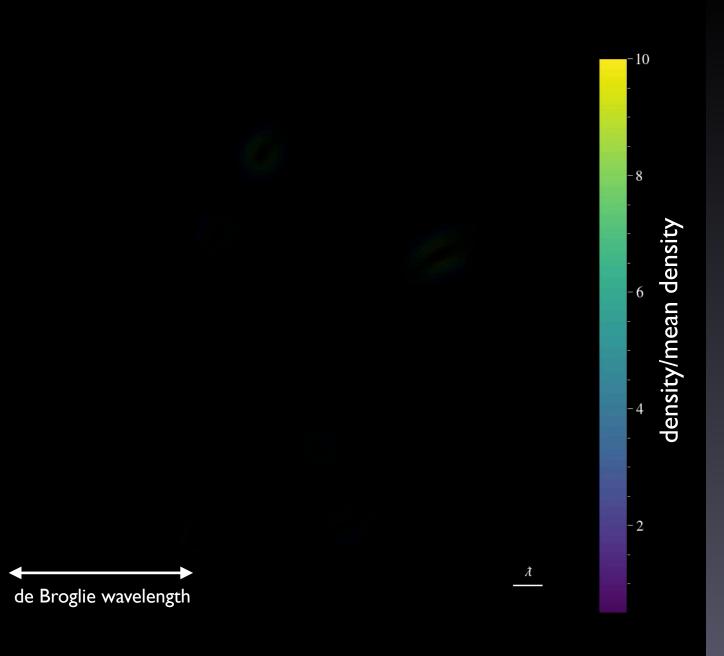
The small-scale structure in a CDM halo

- is composed of bound sub-halos
- gradually disappears as the sub-halos are disrupted by tidal forces

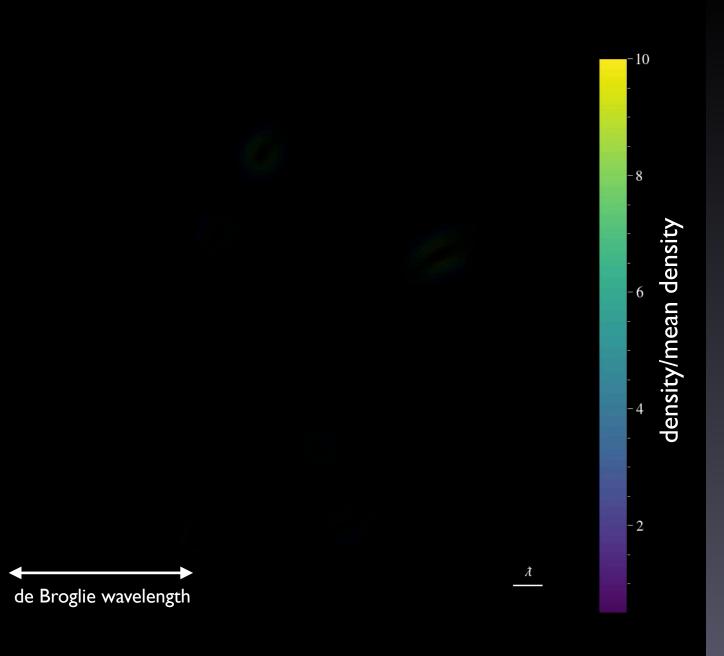
The small-scale structure in an FDM halo

- arises from a set of traveling waves with random phases that is bandlimited at $k \sim 2\pi/\lambda$
- can be thought of as arising from quasi-particles of mass $\sim \rho(\lambda/2\pi)^3$
- lasts forever

$$\frac{\lambda}{2\pi} = \frac{\hbar}{mv} = 1.9 \,\text{kpc} \frac{10^{-22} \,\text{eV}}{m} \frac{10 \,\text{km s}^{-1}}{v}$$



animation by Ben Bar-Or



animation by Ben Bar-Or Relaxation due to collisions between classical particles in a homogeneous system is described by the Boltzmann equation:

$$\partial_t f(p_1) = \int dp_2 dp_3 dp_4 S(p_1, p_2, p_3, p_4) [f(p_3)f(p_4) - f(p_1)f(p_2)]$$

where p is momentum, f(p) is the distribution function in momentum space, and S describes the transition probability or cross-section.

The quantum-mechanical generalization of the Boltzmann equation is the Uehling-Uhlenbeck (1933) equation:

$$\begin{split} \partial_t f(p_1) &= \int dp_2 dp_3 dp_4 \, S(p_1, p_2, p_3, p_4) \\ &\quad \times \left\{ f(p_3) f(p_4) [1 + \epsilon h^3 f(p_1)] [1 + \epsilon h^3 f(p_2)] - f(p_1) f(p_2) [1 + \epsilon h^3 f(p_3)] [1 + \epsilon h^3 f(p_4)] \right\} \end{split}$$

where $\varepsilon = 0$ for classical particles, +1 for bosons, -1 for fermions

Relaxation due to collisions between classical particles in a homogeneous system is described by the Boltzmann equation:

$$\partial_t f(p_1) = \int dp_2 dp_3 dp_4 S(p_1, p_2, p_3, p_4) [f(p_3)f(p_4) - f(p_1)f(p_2)]$$

where p is momentum, f(p) is the distribution function in momentum space, and S describes the transition probability or cross-section.

The quantum-mechanical generalization of the Boltzmann equation is the Uehling-Uhlenbeck (1933) equation:

$$\partial_t f(p_1) = \int dp_2 dp_3 dp_4 S(p_1, p_2, p_3, p_4)$$

$$\times \left\{ f(p_3) f(p_4) \left[1 + \epsilon h^3 f(p_1) \right] \left[1 + \epsilon h^3 f(p_2) \right] - f(p_1) f(p_2) \left[1 + \epsilon h^3 f(p_3) \right] \left[1 + \epsilon h^3 f(p_4) \right] \right\}$$

where $\varepsilon = 0$ for classical particles, +1 for bosons, -1 for fermions

The quantum-mechanical generalization of the Boltzmann equation is the Uehling-Uhlenbeck (1933) equation:

$$\begin{split} \partial_t f(p_1) &= \int dp_2 dp_3 dp_4 \, S(p_1, p_2, p_3, p_4) \\ &\quad \times \left\{ f(p_3) f(p_4) [1 + \epsilon h^3 f(p_1)] [1 + \epsilon h^3 f(p_2)] - f(p_1) f(p_2) [1 + \epsilon h^3 f(p_3)] [1 + \epsilon h^3 f(p_4)] \right\} \end{split}$$

where $\varepsilon = 0$ for classical particles, +1 for bosons, -1 for fermions

This can be derived rigorously if f(p) is defined as the Wigner (1932) distribution function

$$f(\mathbf{r}, \mathbf{v}, t) = \frac{1}{(2\pi)^3} \int d\mathbf{s} \, \psi(\mathbf{r} + \frac{1}{2}\hbar\mathbf{s}/m, t) \, \psi^*(\mathbf{r} - \frac{1}{2}\hbar\mathbf{s}/m, t) e^{-i\mathbf{v}\cdot\mathbf{s}}$$

The quantum-mechanical generalization of the Boltzmann equation is the Uehling-Uhlenbeck (1933) equation:

$$\begin{split} \partial_t f(p_1) &= \int dp_2 dp_3 dp_4 \, S(p_1, p_2, p_3, p_4) \\ &\quad \times \left\{ f(p_3) f(p_4) [1 + \epsilon h^3 f(p_1)] [1 + \epsilon h^3 f(p_2)] - f(p_1) f(p_2) [1 + \epsilon h^3 f(p_3)] [1 + \epsilon h^3 f(p_4)] \right\} \end{split}$$

where $\varepsilon = 0$ for classical particles, +1 for bosons, -1 for fermions

For FDM,
$$\varepsilon = 0$$
 and $h^3f(p) >> 1$ so

$$\begin{split} \partial_t f(p_1) &= h^3 \int dp_2 dp_3 dp_4 \, S(p_1, p_2, p_3, p_4) \\ &\times \left[f(p_3) f(p_4) f(p_1) + f(p_3) f(p_4) f(p_2) - f(p_1) f(p_2) f(p_3) - f(p_1) f(p_2) f(p_4) \right] \end{split}$$

Levkov + (2018), Bar-Or + (2019b)

For a halo having a Maxwellian distribution function with density ρ and one-dimensional velocity dispersion σ , the relaxation time is

$$t_{\rm relax} \simeq 0.34 \frac{\sigma^3}{G^2 m \rho \log \Lambda}$$

if the halo is composed of classical particles of mass m

$$t_{\rm relax} \simeq 0.34 \frac{\sigma_{\rm eff}^3}{G^2 m_{\rm eff} \rho \log \Lambda}$$

if the halo is composed of FDM

$$\sigma_{\rm eff} = \frac{\sigma}{\sqrt{2}}$$

$$m_{\rm eff} = \rho(f\lambda)^3$$

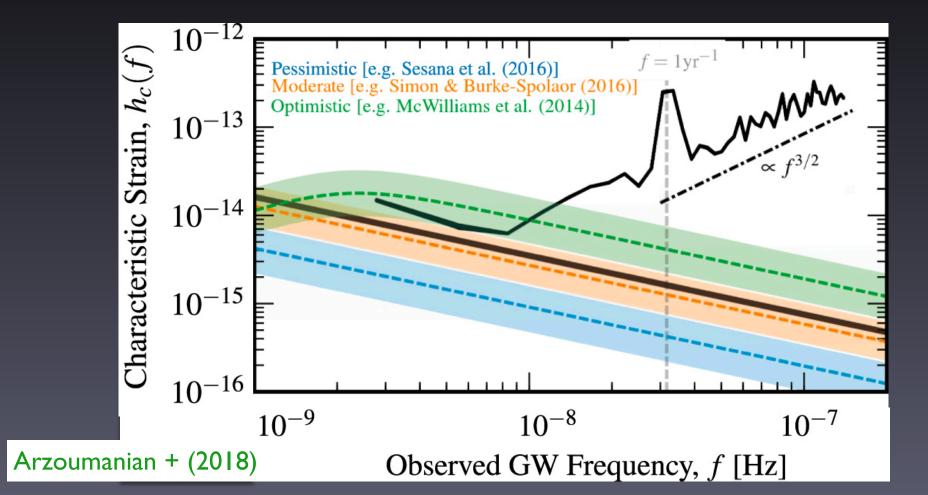
where
$$\lambda = \frac{n}{m\sigma}$$
, f

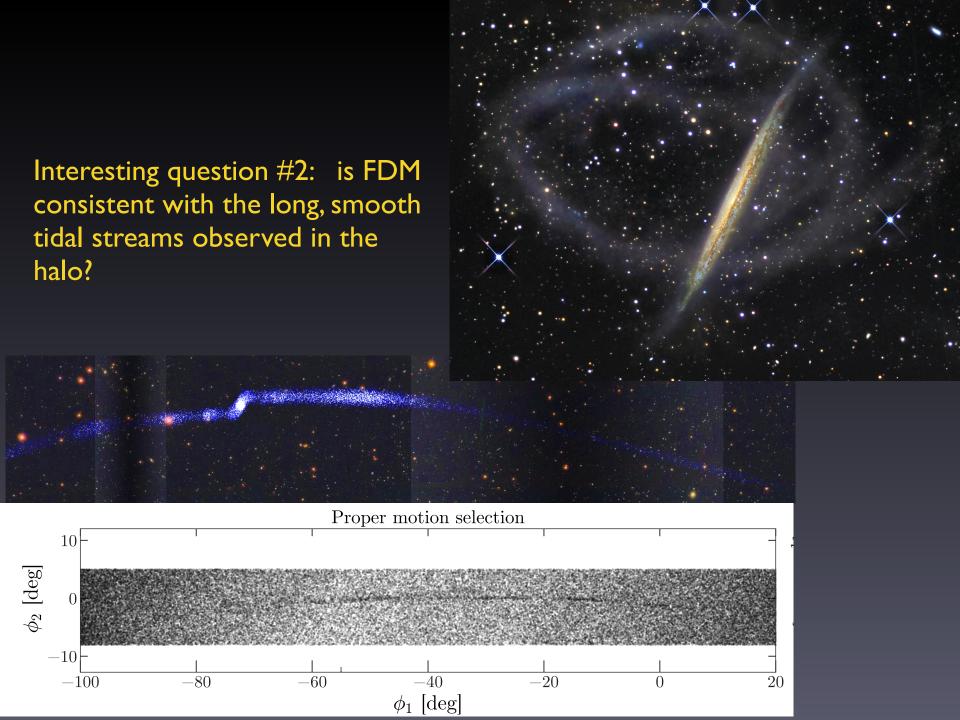
where
$$\sigma_{\rm eff} = \frac{\sigma}{\sqrt{2}}$$
 $m_{\rm eff} = \rho(f\lambda)^3$ where $\lambda = \frac{h}{m\sigma}$, $f = \frac{1}{2\pi^{1/2}} = 0.28$

$$m_{\rm eff} = \simeq 1 \times 10^7 M_{\odot} \left(\frac{1 \text{ kpc}}{r}\right)^2 \left(\frac{200 \text{ km s}^{-1}}{v_{\rm circ}}\right) \left(\frac{10^{-22} \text{ eV}}{m}\right)^3.$$

$$m_{\text{eff}} = \approx 1 \times 10^7 M_{\odot} \left(\frac{1 \text{ kpc}}{r}\right)^2 \left(\frac{200 \text{ km s}^{-1}}{v_{\text{circ}}}\right) \left(\frac{10^{-22} \text{ eV}}{m}\right)^3$$

Interesting question #1: does FDM stall the inspiral of supermassive black holes when they reach equipartition with the quasiparticles?



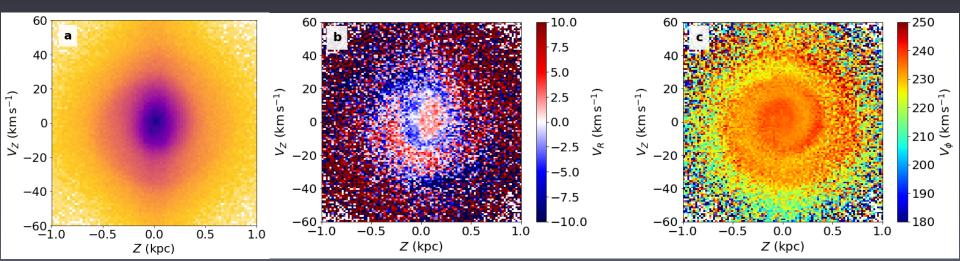


Interesting question #3: does relaxation from an FDM halo thicken galactic disks?

- answer depends strongly on whether the vertical energy input from FDM fluctuations is dumped locally or propagated away as bending waves in the disk
- if dumped locally, FDM heating may dominated the evolution of the disk thickness (Church + 2019)
- if propagated away the thickening is negligible in the solar neighborhood but may be significant at smaller radii (Hui + 2017)

Interesting question #4: is an FDM halo responsible for the non-equilibrium structure seen in the local Milky Way disk?

- Gaia provides plenty of evidence for recent perturbations to the vertical structure of the local disk, e.g., the Gaia snail (Antoja + 2018)
- these are unlikely to be due to CDM sub-halos as these are mostly destroyed at the distance of the Sun (Kelley + 2019)



Interesting question #5: how is relaxation related to the formation of central solitons?

- all excited states of Schrödinger-Poisson equations are unstable lose energy by emitting mass rather than photons. Thus
 - isolated CDM halo survives forever
 - isolated FDM halo always eventually collapses to a soliton

The rate is probably governed by the relaxation time

$$t_{\rm relax} \sim 1 \times 10^{10} \,\mathrm{yr} \left(\frac{v}{100 \,\mathrm{km \, s}^{-1}}\right)^2 \left(\frac{r}{5 \,\mathrm{kpc}}\right)^4 \left(\frac{m}{10^{-22} \,\mathrm{eV}}\right)^3$$

⇒ centers of FDM halos will condense into ground state, a.k.a. soliton; outer parts will behave like CDM

• the soliton is the ground state of the Schrödinger-Poisson equations (Kaup 1968, Ruffini & Bonazzola 1969)

$$-rac{\hbar^2}{2mr^2}rac{d}{dr}r^2rac{d\psi(r)}{dr} + m[\Phi(r)-E]\psi(r) = 0, \quad rac{d\Phi}{dr} = rac{4\pi G}{r^2}\int_0^r x^2|\psi(x)|^2dx.$$

 solutions form a one-parameter family of equilibrium bound systems. Central density and halfmass radius depend on mass M as

$$\rho_c = 0.0044 \left(\frac{Gm^2}{\hbar^2}\right)^3 M^4 = 7.0 \, M_{\odot} \, \text{pc}^{-3} \left(\frac{m}{10^{-22} \, \text{eV}}\right)^6 \left(\frac{M}{10^9 \, M_{\odot}}\right)^4$$
$$r_{1/2} = 3.93 \frac{\hbar^2}{GMm^2} = 0.34 \, \text{kpc} \frac{10^9 M_{\odot}}{M} \left(\frac{10^{-22} \, \text{eV}}{m}\right)^2.$$

• the soliton is the ground state of the Schrödinger-Poisson equations (Kaup 1968, Ruffini & Bonazzola 1969)

$$-\frac{\hbar^2}{2mr^2}\frac{d}{dr}r^2\frac{d\psi(r)}{dr} + m[\Phi(r) - E]\psi(r) = 0, \quad \frac{d\Phi}{dr} = \frac{4\pi G}{r^2}\int_0^r x^2|\psi(x)|^2dx.$$

 solutions form a one-parameter family of equilibrium bound systems. Central density and halfmass radius depend on mass M as

$$\rho_c = 0.0044 \left(\frac{Gm^2}{\hbar^2}\right)^3 M^4 = 7.0 \, M_{\odot} \, \text{pc}^{-3} \left(\frac{m}{10^{-22} \, \text{eV}}\right)^6 \left(\frac{M}{10^9 \, M_{\odot}}\right)^4 \qquad \rho \propto M^4$$

$$r_{1/2} = 3.93 \frac{\hbar^2}{GMm^2} = 0.34 \, \mathrm{kpc} \frac{10^9 M_{\odot}}{M} \left(\frac{10^{-22} \, \mathrm{eV}}{m} \right)^2.$$

 $r_{1/2} \propto 1/M$

radius decreases as mass increases

• the soliton is the ground state of the Schrödinger-Poisson equations (Kaup 1968, Ruffini & Bonazzola 1969)

$$-\frac{\hbar^2}{2mr^2}\frac{d}{dr}r^2\frac{d\psi(r)}{dr} + m[\Phi(r) - E]\psi(r) = 0, \quad \frac{d\Phi}{dr} = \frac{4\pi G}{r^2}\int_0^r x^2|\psi(x)|^2dx.$$

 solutions form a one-parameter family of equilibrium bound systems. Central density and halfmass radius depend on mass M as

$$\rho(r) = \frac{\rho_c}{[1 + 0.19(r/r_{1/2})^2]^8}$$

empirical fit

$$\rho_c = 0.0044 \left(\frac{Gm^2}{\hbar^2}\right)^3 M^4 = 7.0 \, M_{\odot} \, \text{pc}^{-3} \left(\frac{m}{10^{-22} \, \text{eV}}\right)^6 \left(\frac{M}{10^9 \, M_{\odot}}\right)^4$$

$$\rho \propto M^4$$

$$r_{1/2} = 3.93 \frac{\hbar^2}{GMm^2} = 0.34 \, \mathrm{kpc} \frac{10^9 M_{\odot}}{M} \left(\frac{10^{-22} \, \mathrm{eV}}{m} \right)^2.$$

$$r_{1/2} \propto 1/M$$

radius decreases as mass increases

Relaxation in FDM

 centers of FDM halos will condense into solitons; outer parts will behave like CDM

$$t_{\rm relax} \sim 1 \times 10^{10} \,\mathrm{yr} \left(\frac{v}{100 \,\mathrm{km \, s^{-1}}}\right)^2 \left(\frac{r}{5 \,\mathrm{kpc}}\right)^4 \left(\frac{m}{10^{-22} \,\mathrm{eV}}\right)^3$$

- at low masses (small velocities and radii) the soliton occupies most of the halo
- at high masses (large velocities and radii) the soliton is much smaller and denser than the halo
- from numerical simulations (Schive + 2014)

$$M_{\rm soliton} \sim M_{\rm min}^{2/3} M_{\rm halo}^{1/3}, \quad M_{\rm min} = 4 \times 10^7 M_{\odot} \left(\frac{10^{-22} \,\mathrm{eV}}{m}\right)^{3/2}$$

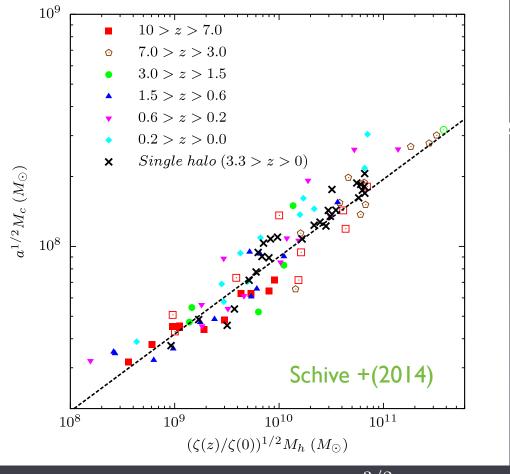
which implies peak rotation speed in soliton = peak rotation speed in halo (Bar + 2018)

Relaxa

 centers of FDM halos will con like CDM

$$t_{\rm relax} \sim 1 \times 10^{10} \, \mathrm{yr} \left(\frac{\mathrm{MeV}}{100} \right)$$

- at low masses (small velocities the halo
- at high masses (large velocities denser than the halo
- from numerical simulations (S



$$M_{\text{soliton}} \sim M_{\text{min}}^{2/3} M_{\text{halo}}^{1/3}, \quad M_{\text{min}} = 4 \times 10^7 M_{\odot} \left(\frac{10^{-22} \text{ eV}}{m}\right)^{3/2}$$

which implies peak rotation speed in soliton = peak rotation speed in halo (Bar + 2018)

Summary

- relaxation in an FDM halo can be described by the Uehling-Uhlenbeck equation
 - leads to a modified Fokker-Planck equation in which the collision term is cubic, rather than quadratic, in the distribution function
 - behavior is identical to the behavior of classical particles in a halo with effective dispersion $\sigma_{\text{eff}}=\sigma/\sqrt{2}$ and mass $m_{\text{eff}}=\rho$ (f\lambda)³ where f=0.28 and λ is the de Broglie wavelength at velocity σ
- many unanswered questions:
 - does FDM stall the inspiral of supermassive black holes?
 - is FDM consistent with the long, smooth tidal streams observed in the halo?
 - does relaxation from an FDM halo thicken galactic disks?
 - what is the relation of relaxation to the formation of central solitons?