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To describe a quantum system, we need:

– A Hilbert space, spanned by an orthonormal basis of elementary
states,

– An indication as to what these basis elements mean physically:
what are the observables?

– A unitary evolution operator that tells us how the system evolves.

– Unitarity of this operator demands that the states evolve entirely
within this Hilbert space, so we must be sure we have the entire
Hilbert space needed to describe the system (“completeness”)

This can be done for a black hole. The Hilbert space is
derived from the system of quantised fields (including grav. fields)

in the black hole background. But completeness requires that
we modify the boundary conditions.

It all begins with the gravitational back reaction.
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The gravitational effect of a fast, massless particle is easy to understand:

Schwarzschild metric of a particle with tiny rest mass m� MPlanck :

And now apply a strong Lorentz boost, so that E/c2 � MPlanck :

curvature

flat spaceflat space
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The gravitational backreaction:

Calculate the Shapiro time delay caused by the grav. field of a fast moving
particle: simply Lorentz boost the field of a particle at rest:
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δu−(x̃) = −4G p−(x̃ ′) log |x̃ − x̃ ′| .

P.C. Aichelburg and R.U. Sexl, J. Gen. Rel. Grav. 2 (1971) 303,
W.B. Bonnor, Commun. Math. Phys. 13 (1969) 163,
T. Dray and G. ’t Hooft, Nucl. Phys. B253 (1985) 173.
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The firewall transformation

The positions of all out-particles are identified with the momenta of all
in-particles, and vice versa, such that the commutation rules are

preserved: [u±, p∓] = i .
δp
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Thus, we count the out-particles not independently from the in-particles;
instead, our states in Hilbert space are defined either by counting all
in-particles, or all out-particles.

These states are related by the BH scattering matrix.
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The best way to count the particles is: to count a particle
as in-going if |p−in| < MPlanck and |u+in > LPlanck , and
as out-going if |p+out| < MPlanck and |u−out| > LPlanck .

Then these particles always keep their momenta small, so that they do
not cause space-time curvature, while their positions are always greater
than LPlanck so that “ordinary physics” should apply to them.

However, replacing momentum by position has a subtle effect on
space-time topology.
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Which space-time points must be regarded as neighbors?

Standard GR formalism says that points are connected such that there
is a deltra distribution of curvature:
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Which space-time points must be regarded as neighbors?

But the firewall transformation treats
space-time as locally flat:
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Thus, the firewall transformation

1) removes the firewalls by transforming hard in-particles into soft
out-particles, and

2) this way it restores local smoothness of space-time.

To describe the evolution of all quantum states in the Schwarzschild
geometry, we can now limit ourselves to the maximal analytic extension
for the eternal black hole.
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The antipodal identification: only points ON the horizon

II I
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Regions I and II describe different points in the same universe.

II I

(x , y , θ, ϕ) and
(−x ,−y , π − θ, ϕ + π)
describe same point

on the horizon
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Black emptiness: blue regions are the
accessible part of space-time; dotted
lines indicate identification.

The white sphere within is not part
of space-time. Call it a ‘vacuole’.

At given time t, the black hole is a 3-dimensional vacuole. The entire life cycle
of a black hole is a vacuole in 4-d Minkowski space-time: an instanton

N.Gaddam, O.Papadoulaki, P.Betzios (Utrecht PhD students)

Space coordinates change sign at the identified points
– and also time changes sign
(Note: time stands still at the horizon itself).

This scheme only requires CPT symmetry, no other combinations of C , P
and/or T .
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Entanglement of Hawking particles

The hartle-Hawking state,

|HH 〉 = C
∑
E ,n

e−
1
2βE |E , n〉I |E , n〉II

where II = antipode of I ,

is now a pure quantum state, where regions I and II are entangled.
It is not a thermal state.

Only if we do not look at states II , the states in I seem to form a perfect
thermal mixture.

Only those General coordinate transformations are allowed that are
one-to-one, so that no doubling takes place for the asymptotic regions.
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Philosophy: what is needed is the evolution law over small time stretches.

If we have that, we can integrate the equations to get the large-time
behaviour. Not the other way around!

During the small time interval, the black hole may be considered as
eternal. This is why we consider the Penrose diagram of the stationary
black hole.

The imploding matter and the final explosive evaporation do not play a
role here. They are left out. Later we worry about how they can occur at
other epochs of time.

During this interval we consider only excitations due to soft particles
(these are the particles that do not (yet) affect the space-time metric as
their grav. fields are weak).

Soft particles are soft for the local, freely falling observer.
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The complete Hilbert space of the black hole will be spanned by

1) The Hartle Hawking (HH) state (which is just a single state
describing a steady stream of in-going and out-going particles)
For the local free-fall observer, it is just the vacuum state.

2) Other states, obtained by creating soft particles in HH as seen by
the local free-fall observer.
These operators undergo Bogolyubov transformations to create and
annihilate particles as seen by the distant observer.

3) As time proceeds, soft particles turn into hard particles. But these
leave their gravitational footprints in the bath of soft particles, as
these are being displaced across the Cauchy surface.
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By replacing the momentum operators p−in by the position operators u−out
of the out-going particles, we exchange soft and hard particles. Thus, no
hard particles will be left.

When pin becomes VERY hard, the associated u−out coordinate of the
out-particle will become so large that it leaves the system. Thus, the
hard particles can be accommodated for by ordinary, soft particles states.

Note that, this way, out-particles can carry away energy out of the BH,
so that, on long time scales, the mass is not constant.

The total energy is now exactly conserved (time translation invariance).
The BH mass changes when a particle moves so far out that it is no
longer part of the BH.
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Expand in Spherical harmonics:

u±(Ω) =
∑
`,m

u`mY`m(Ω) , p±(Ω) =
∑
`,m

p±`mY`m(Ω) ;

[u±(Ω), p∓(Ω′)] = iδ2(Ω, Ω′) , [u±`m, p
∓
`′m′ ] = iδ``′δmm′ ;

u−out =
8πG

`2 + `+ 1
p−in , u+in = − 8πG

`2 + `+ 1
p+out ,

p±`m = total momentum in of out
in -particles in (`,m)-wave ,

u±`m = (`,m)-component of c.m. position of in
out-particles .

Because we have linear equations, all different `,m waves decouple,
and for one (`,m)-mode we have just the variables u± and p±.
They represent only one independent coordinate u+, with
p− = −i∂/∂u+.
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The evolution law applies to every (`,m) mode separately (in our
approximation, there is no cross-talk). In each (`,m) mode, the energy κ (seen
by the distant observer) is separately conserved — but only when regions I and
II are taken together: the states are entangled over I and II . So there is one
wave function ψσ(|u+|) where σ = I or II . The out-states are obtained from
the in-states by Fourier transformation, which is unitary by construction:

The evolution equation, at given energy κ, is:

ψout =

(
F+ F−
F− F+

)
e−iκ log

(
8πG/(`2 + `+ 1)

)
ψin , where

F±(κ) =

∫ ∞
0

dy

y
y

1
2−iκ e∓iy = Γ( 1

2 − iκ) e∓
iπ
4 ∓

π
2 κ .

Matrix

(
F+ F−
F− F+

)
is unitary: F+F

∗
− = −F−F ∗+ and |F+|2 + |F−|2 = 1 .

The integration kernal vanishes for large values of the argument, so this
interaction is approximately local in time. The (`,m) waves do not spend much
time in the black hole. the Hartle-Hawking particles do stay there forever.
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The operators u(θ, ϕ) and p(θ, ϕ) change signs if we go from pode to
antipode. therefore, only odd values of ` contribute. This is
counter-intuitive, but remember that u and p are not second-quantized.

Note that the local freely falling observer will find it obvious that u and p
switch sign if we interchange regions I and II .

The identification of our position- or momentum-states as elements of
the Fock space of the Standard Model is highly non-trivial

(and needs to be studied further.)

The ` = 0 “dust shell” is not a legal state here. One must consider all its
myriads of dust particles separately.

The energy is defined in the regions I and II separately, and that can be in odd

and even ` states.
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Our procedure it totally invariant under time translations.
Total energy is exactly conserved,

Not conserved: black hole mass =
total energy minus energies of all distant particles.

The particles in their (`,m) modes do not spend much time in the black
hole, but the Hartle-Hawking background is there eternally.

During formation and during final evaporation, more particles are outside,
so the black hole starts out and ends up very light.

With our, calculable and unitary, evolution operator the system became
totally internally consistent.

But ther relation between QFT Fock states and our spherical waves of
momentum distribution requires further study.

Conjecture: high ` values distinguish different SM particles.
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The Fourier transform in x , p space is non-local:

〈x |p〉 = 1√
2π

e ipx

But if we write x = σx e
%x and p = σp e

%p , where σx and σp are signs ±, then
the relation becomes:

〈%x , σx |%p, σp〉 = 1√
2π

e
1
2
(%x + %p) + iσxσp e

%x+%p

= K−σxσp (%x + %p) .

Blue = real component,
Red = imaginary comp.

K+(x) :
0

In practice it will appear as if F has
a finite support.
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THANK YOU
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So, a fast particle moving in will shift all particles on their way out; some
of them will move from region I to II or back.

This is why we cannot ignore the particles of region II .

Furthermore, region II is an exact copy of region I . It has asymptotic
regions. Therefore, it represents an entire universe.

What universe is that ?

Only one answer makes sense:

It is the other side of the same black hole.

This is a topological twist without singularities,

because nowhere in regions I or II , the radius is less than 2GMBH.
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