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What are Gravitational Waves (GWs)?

   

Gmn =
8pG
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General Relativity (1915)

Gravitational Waves (1916)
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A long history...

Elena Cuoco
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How we detected GWs?
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Coalescing Binary 
Systems CBC

 Black hole – black hole

Neutron star – neutron 
star

• BH-NS

•Analytical waveform 

Transient‘Burst’Sources

• core collapse supernovae

• unmodeled waveform

Cosmic GW Background

• residue of the Big Bang,

• stochastic, incoherent 
background

Continuous Sources

• Spinning neutron stars

• monotone waveform

Short long
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Astrophysical sources
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CBC Gravitational Wave signals

An example signal from an inspiral gravitational wave source. [Image: A. Stuver/LIGO]

An artist's impression of two stars orbiting each other and progressing (from left to right) 
to merger with resulting gravitational waves. [Image: NASA/CXC/GSFC/T.Strohmayer]

6



7

Elena CuocoFeb 13th 2019, CERN 

International Collaboration
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The first triple detection

Feb 13th 2019, CERN 
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The MultiMessenger Astronomy

DOI:10.1103/PhysRevLett.119.161101.

Feb 13th 2019, CERN Elena Cuoco

https://it.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1103/PhysRevLett.119.161101


The first GW catalog

Elena CuocoFeb 13th 2019, CERN 
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GWTC-1: A Gravitational-Wave Transient Catalog of 

Compact Binary Mergers Observed by LIGO and Virgo 

during the First and Second Observing Runs

arxiv.org/abs/1811.12907

https://arxiv.org/abs/1811.12907
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O3 is coming!
11
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Why Machine 
Learning in 
Gravitational 
Wave research
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LIGO/Virgo data
are time series sequences… noisy time series 

with low amplitude GW signal buried in
Elena CuocoFeb 13th 2019, CERN 
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Known GW signals
Compact coalescing 
binaries has known 
theoretical waveforms

Optimal filter: Matched 
filter

Too many templates to 
test

Unknown GW signals
Core collapse 
supernovae

No Optimal filter

Parameters estimation

Noise

Moving lines
Broad band noise
Glitch noise

“Pattern recognition”
by visual inspection

Elena CuocoFeb 13th 2019, CERN 

Our “signals”

Astrophysical signals
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Example of other noise signals

I. Fiori courtesy
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Example of GW signals 
in Time-Frequency plots

Phys. Rev. Lett., 119 (14), pp. 141101, 2017.

PhysRevLett.119.161101.

http://dx.doi.org/10.1103/PhysRevLett.119.161101
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Example of Glitch signals
https://www.zooniverse.org/projects/zooniverse/gravity-spy

Gravity Spy, Zevin et al (2017)
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How Machine Learning can help

Data conditioning 
▪ Identify Non linear noise coupling
▪ Use Deep Learning to remove 

noise
▪ Extract useful features to clean 

data

Signal Detection/Classification/PE
▪ A lot of fake signals due to noise
▪ Fast alert system
▪ Manage parameter estimation

Elena CuocoFeb 13th 2019, CERN 



Elena CuocoFeb 13th 2019, CERN 

Numbers about Virgo data

Data Stream 
Flux 

• 50MB/s

Data on disk

• 1-3PB

Number of 
events

• 1/week

• 1/day?

Number of 
glitches

• 1/sec

• 0.1/sec?

Should be analysed in less than 1min
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20Why Signal Classification?

▪ If we are able to classify 
the noise events, we can 
clean the data in a fast and 
clear way

▪ We can help 
commissioners

▪ We can identify glitch 
families

Elena CuocoFeb 13th 2019, CERN 
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Machine learning models

No label 
for the 
data

Unsupervised

Labeled 
training 
data 

Supervised

•Few labeled 
data

•A lot of not 
labeled data

Semi-supervised

Reinforcement learning

21
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Artificial Intelligence workflow
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136 LIGO/Virgo members

30 active projects

What is going in the ML LIGO/Virgo group
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Example of interesting works

▪ Labelling glitches: Gravity Spy

▪ Noise Removal
Non-linear and 
non-stationary
noise subtraction with Deep 
Learning 

Elena CuocoFeb 13th 2019, CERN 

G. Vajente courtesy
S. Coughlin courtesy



Hunter Gabbard, Michael 
Williams, 
Fergus Hayes, and Chris 
Messenger
Phys. Rev. Lett. 120, 141103 

 Deep learning procedure requiring only the raw data time 
series as input with minimal signal pre-processing. 

 Performance similar to Optimal Wiener Filter

Feb 13th 2019, CERN 

Signal detection

Elena Cuoco
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26Glitches classification efforts in 
LIGO/Virgo Community

● Gravity Spy (M. Zevin,S. Coughlin,J. R. 
Smith, A. Lundgren, D. Macleod, V. 
Kalogera)

● Wavefier(E. Cuoco et al.)
● WDFX (E. Cuoco, M. Razzano, A. Utina)
● Karoo GP (K. Staats, M. Cavaglià)
● Wavelet-DBNN (N. Mukund S. Abraham 

S. Mitra et al)
● ImageGlitch CNN (M. Razzano, E. Cuoco)
● Low latency transient detection and 

classification (I. Pinto, V. Pierro, L. 
Troiano, E. Mejuto-Villa, V. Matta, P. 
Addesso)

● Deep Transfer Learning (Daniel George, 
Hongyu Shen, E.A. Huerta)

● Gstlal-iDQ (P. Godwin, R. Essick, D. 
Meacher, S. Chamberlain, C. Hanna, E. 
Katsavounidis, L. Wade, M. Wade, D. 
Moffa, K. Rose)

● New ranking statistic for gstlal (K. Kim, 
T.G.F. Li, R.K.-L. Lo, S. Sachdev, R.S.H. 
Yuen)

● RGB image SN CNN (P. Astone, S. Frasca, 
C. Palomba, F. Ricci, M. Drago, I. Di 
Palma, F. Muciaccia, Pablo Cerda-Duran)

Elena CuocoFeb 13th 2019, CERN 
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Glitch classification strategy for GW detectors
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Two different approaches

▪ Images ▪ Time series

Elena Cuoco

28

Feb 13th 2019, CERN 

Image-based deep learning for classification of noise transients in gravitational wave detectors, 

Massimiliano Razzano, Elena Cuoco, Class.Quant.Grav. 35 (2018) no.9, 095016

Wavelet-based Classification of Transient Signals for Gravitational Wave Detectors, Elena Cuoco, 

Massimiliano Razzano and Andrei Utina, #1570436751 accepted reviewed paper at EUSIPCO2018



Glitches 
classifcation

▪ Application on Simulated data
▪ Application on Real Data
▪ Time-series (Wavelet) based 

classification
▪ Image based classification 

with Deep Learning

Elena CuocoFeb 13th 2019, CERN 
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To test the pipeline, 
we prepared ad-
hoc simulations

Simulate colored 
noise using public 

H1 sensitivity curve

Add 6 different 
classes of glitch 

shapes

Elena CuocoFeb 13th 2019, CERN 

Test on simulated data sets 30
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Ad hoc simulations for tests (e.g. Powell+2015)

Simulate colored noise using public sensitivity curve

6 classes of glitch shapes (+ NOISE one to check detection)

Example of 

H1 

simulation

Elena CuocoFeb 13th 2019, CERN 

Data simulation

31

Razzano’s courtesy



To show the glitch time-series 
here we don’t show the noise 
contribution

32
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Simulated signal families

Razzano M., Cuoco E.  CQG-104381.R3

Waveform

Gaussian

Sine-Gaussian

Ring-Down

Chirp-like

Scattered-like

Whistle-like

NOISE (random)



Simulated time series with 8kHz sampling rate

Glitches distributed with Poisson statistics m=0.5 Hz

2000 glitches per each family

Glitch parameters are varied randomly to achieve 

various shapes and Signal-To-Noise ratio

33
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Signal distribution
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Data preprocessing

▪ Many spectral features ▪ Non stationary and non linear 
noise

Elena Cuoco
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Whitening in time domain

It can be useful for on-
line application

It can be implemented 
for non stationary noise

It can catch the 
autocorrelation function 

to larger lags

We need parametric 
modeling

35



36

Elena CuocoFeb 13th 2019, CERN 

AR parametric modeling

An AutoRegressive process is governed by this relation

Kay S 1988 Modern spectral estimation: Theory and Application Prentice Hall Englewood Cliffs



37Advantages of AR modeling

▪ Stable and causal filter: 
same solution of linear 
predictor filter

Elena CuocoFeb 13th 2019, CERN 
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Wiener-Hopf equations 
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PSD AR(P) Fit

Feb 13th 2019, CERN 

Cuoco et al. Class.Quant.Grav. 18 (2001) 1727-1752 and 
Cuoco et al.Phys.Rev.D64:122002,2001

38
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Lattice Filter

Feb 13th 2019, CERN 

The Least Squares based methods build their cost function using all the information contained in 
the error function at each step, writing it as the sum of the error at each step up to the iteration n

weights

𝜖 𝑛 =෍

1

𝑛

𝜆𝑛−1𝑒2(𝑖|𝑛)

Desired signal

Forgetting factor

39
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Adaptive whitening using Lattice Filter

▪ If 𝜆 = 1 we are in the 
stationary data

▪ If 0 < 𝜆 < 1 we can follow 
non stationary noise

▪ The Least Square Lattice 
filter is a modular filter 
with a computational cost 
proportional to the order P

Elena CuocoFeb 13th 2019, CERN 
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Whitening in time domain

• We estimate the AR 
and reflection 
coefficients in a first 
part of the data

• We assume the data 
are stationary 

• We  setup a Lattice 
structure to run on 
line the whitening 
filter in time domain.

Static 
whitening

• We make only a 
guess of the rmse

• We start estimating 
the reflection 
coefficients while 
acquiring data

• We use the forgetting 
factor to follow and 
remove the slow non 
stationary noise

Adaptive 
whitening

Elena CuocoFeb 13th 2019, CERN 
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Whitened data in time domain

Feb 13th 2019, CERN 

Example on simulated data

42
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Signals in whitened data

Not Whitened

Whitened



Wavelet based 
classification

▪ Time series

44

Elena CuocoFeb 13th 2019, CERN 
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Wavelet 
decomposition

Elena CuocoFeb 13th 2019, CERN 

45
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Wavelet decomposition of time series

The wavelet transform 
replaces the Fourier transform 
sinusoidal waves by a family 
generated by translations and 
dilations of a window called a 
wavelet.

Elena CuocoFeb 13th 2019, CERN 
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Wavelet denoising

Feb 13th 2019, CERN 

Wavelet transform

Threshold function
Local noise

47



48Wavelet Detection filter as Event 
Trigger Generator

▪ Select highest values

▪ Reconstruct a proto-SNR 

Elena CuocoFeb 13th 2019, CERN 

∝ Energy of the signal

∝ SNR of the signal



Data
Whitening 

in time 
domain

Wavelet 
transform

De-noising
Parameter 
estimation

Trigger 
list

Wavelet Detection Filter (WDF) 
workflow

49
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Glitchgram
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WDF waveform extraction
 Wavelet transform in the selected window size

 Retain only coefficients above a fixed threshod (Donoho-
Johnston denoise method)

 Create a metrics for the energy using the selected 
coefficients and give back the trigger with all the wavelet 
coefficients.

 In the wavelet plane, select the highest values to build the 
event

 Inverse wavelet transform

 Estimate mean and max frequency and snr max of the 
cleaned event Gps, duration, snr, snr@max, freq_mean, freq@max, 

wavelet type triggered + corresponding wavelets 

coefficients.

mailto:freq@max
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Waveform reconstruction

Feb 13th 2019, CERN 
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Waveform reconstruction: example

Injected

Detected



Injection and 
Reconstruction 
in perfect match

Elena CuocoFeb 13th 2019, CERN 



55Glitch classification
▪ Unsupervised on Simulated data:

▫ Classification methods for noise transients in advanced gravitational-wave detectors
Jade Powell, Daniele Trifirò, Elena Cuoco, Ik Siong Heng, Marco Cavaglià, Class.Quant.Grav. 32 
(2015) no.21, 215012

▪ Unsupervised on Real data (ER7):
▫ Classification methods for noise transients in advanced gravitational-wave detectors II: performance 

tests on Advanced LIGO data, Jade Powell, Alejandro Torres-Forné, Ryan Lynch, Daniele Trifirò, Elena 
Cuoco, Marco Cavaglià, Ik Siong Heng, José A. Font, Class.Quant.Grav. 34 (2017) no.3, 034002

Elena Cuoco

55
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Wavelet Detection Filter and 
XGBoost (WDFX)

56

Feb 13th 2019, CERN Elena Cuoco

Supervised classification
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Supervised Classification: 
eXtreme Gradient Boosting

● https://github.com/dmlc/xgboost
● Tianqi Chen and Carlos Guestrin. XGBoost: 

A Scalable Tree Boosting System. In 22nd 
SIGKDD Conference on Knowledge 
Discovery and Data Mining, 2016

● XGBoost originates from research project 
at University of Washington, see also the 
Project Page at UW. Tree Ensemble

𝑦𝑛 = ෍

𝑘=1

𝐾

𝑓𝑘 𝑥𝑛

https://github.com/dmlc/xgboost


58

Elena CuocoFeb 13th 2019, CERN 

Xgboost

Train/validation/test set: 70/15/15

task Classes Learning-

rate

Max_depth estimators

Binary 2 0.01 7 5000

Multi-label 7 0.01 10 6000



59WDFX: Binary Classification Results

Chirp-like 
signals
OR
Noise

Elena CuocoFeb 13th 2019, CERN 
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Overall accuracy >98%

Updated results

Cuoco, Razzano in preparation



60WDFX Results: Multi-Label 
Classification

Elena CuocoFeb 13th 2019, CERN 
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Overall accuracy >93%

Cuoco, Razzano in preparation

Updated results



Image-based 
classification

▪ Images

Elena CuocoFeb 13th 2019, CERN 



Www.gravityspy.org

Citizen scientists contribute to classify glitches

More details in Zevin+17 

Glitch & Citizen science: GravitySpy

“whistle” glitch

Feb 13th 2019, CERN Elena Cuoco 62

http://Www.gravityspy.org/


Examples of time-frequency glitch morphology (Zevin+17)

Sample glitch gallery

Blip glitches

Whistle glitches

Feb 13th 2019, CERN Elena Cuoco 63



Sample glitch gallery

Helix glitches

Koi fish glitches

Feb 13th 2019, CERN Elena Cuoco 64
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Deep learning for Glitch Classification
 Many approaches to data: we choose image classification of time 

frequency images
 The architecture is based on Convolutional deep Neural Networks 

(CNNs).
 CNNs are more complex than simple NNs but are optimized to catch 

features in images, so they are the best choice for image classification



Input GW data 

• Image processing

• Time series whitening

• Image creation from time series (FFT spectrograms)

• Image equalization & contrast enhancement

Classification

• A probability for each class, take the max

• Add a NOISE class to crosscheck glitch detection

Network layout

• Tested various networks, including a 4-block layers

Run on GPU Nvidia GeForce GTX 780 

• 2.8k cores, 3 Gb RAM) 

• Developed in Python + CUDA-optimized libraries

66
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Pipeline structure



Spectrogram for each image 

2-seconds time window to highlight 
fatures in long glitches

Data is whitened

Optional contrast stretch

67
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Building the images

Simulations now available 

on FigShare



 Datasets of 14000 images
 Training/validation/test → 70/15/15
 Image size 241px x 513px
 Reduced the images by a factor 0.55 due to memory constraints
 Use validation set to tune hyperparameters
 On our hardware, training time ~8 hrs for ~100 epochs 
 When training is done, classification requires ~1 ms/image (on our configuration)

68
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Training the CNN



We compared classification performances with simpler architectures

Linear Support Vector Machine

CNN with 1 hidden layer

CNN with one block
(2 CNNs+Pooling&Dropout)

Deep 4-blocks CNNs

69
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Classification Results



Normalized Confusion Matrix

Deep CNN

SVM

Deep CNN better at distinguishing 
similar morphologies

70
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Classification accuracy



Some cases of more glitches in the time window, always identify the 
right class

100% Sine-Gaussian

71
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Example of classification results

More details in 

Razzano & Cuoco 2018, CQG,35,9 
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Glitch name # in H1 # in L1

Air compressor 55 3

Blip 1495 374

Chirp 34 32

Extremely Loud 266 188

Helix 3 276

Koi fish 580 250

Light Modulation 568 5

Low_frequency_burst 184 473

Low_frequency_lines 82 371

No_Glitch 117 64

None_of_the_above 57 31

Paired doves 27 -

Power_line 274 179

Repeating blips 249 36

Scattered_light 393 66

Scratchy 95 259

Tomte 70 46

Violin_mode 179 -

Wandering_line 44 -

Whistle 2 303

Dataset from GravitySpy images

Elena CuocoFeb 13th 2019, CERN 

Real data: O1 run
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Examples of classification
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Full CNN stack

Consistent with 

Zevin+2017

Elena CuocoFeb 13th 2019, CERN 

Results

74
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What’s next?

• Create a Labelled training set for Virgo data
• Use citizen project to have larger labelled data
• Setup a supervised pipeline running on line on Virgo data
• Use Machine Learning for noise cancellation
• Use Machine Learning for control system



76

Elena CuocoFeb 13th 2019, CERN 

A project in collaboration with LAPP and Trust-IT services  

H2020-Astronomy ESFRI and Research Infrastructure Cluster 

(Grant Agreement number: 653477).

H2020-ASTERICS project brings together for the first 

time scientists and communities from astronomy, 

astrophysics, particle astrophysics & big data.

http://www.asterics2020.eu
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Wavefier: real time analysis
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Different Machine Learning 
approaches

Wavelet coefficients and some meta-parameters

Reconstrutcted waveform in 1-D

Images and CNN

Transfer learning

Semi supervised

GANs to have a larger data set
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Showing the results
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Wavefier dashboard

Grafana. Web based

dashboard
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http://www.g2net.eu/

http://www.g2net.eu/
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Facilitate conceiving 
innovative solutions 

for the analysis of the 
data of Gravitational 

Wave (GW) detectors.

Investigate new 
strategies for the 

handling/suppression 
of instrumental and 
environmental noise  

using Machine 
Learning techniques.

Investigate possible 
solutions to monitor 
the low-frequency 
Newtonian noise 

through the use of 
adaptive robots.

Bridge the gap 
between the 

disciplines of GW 
physics, geophysics, 

computer science and 
robotics 

Train a new 
generation of young 
scientists with broad 

skills in Machine 
Learning, GW, Control 

and Robotics.

G2net: goals of the ACTION

Feb 13th 2019, CERN 



THANKS!

Elena Cuoco
Head of Data Science Office at EGO
SNS Faculty associate
CA17137 g2net Action Chair
ESCAPE General Assembly Chair

elena.cuoco@ego-gw.it
Twitter: @elenacuoco
website: www.elenacuoco.com

Feb 13th 2019, CERN Elena Cuoco

You can find me 
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WDF waveform extraction
 Wavelet transform in the selected window size

 Retain only coefficients above a fixed threshod (Donoho-
Johnston denoise method)

 Create a metrics for the energy using the selected 
coefficients and give back the trigger with all the wavelet 
coefficients.

 In the wavelet plane, select the highest values coefficients to 
build the event

 Inverse wavelet transform

 Estimate mean and max frequency and snr max of the 
cleaned event Gps, duration, snr, snr@max, freq_mean, freq@max, 

wavelet type triggered + corresponding wavelets 

coefficients.

mailto:freq@max
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WDF: how it works

time

1 sec 1 sec

1024 

points

1024 

points
1024 

points ...
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WDF results on simulated data

●Detected 99% of injected signals (some with SNR=1)

●False Alarm rate:10%  for a time window shift of 1sec for SNR>10



Parameter estimations in 0.1sec

Feb 13th 2019, CERN Elena Cuoco
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Time diff

SNR diff 

Frequency diff

Duration diff


