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Power on Target 1.4 MW at 1.0 GeV

Pulse on Target 1.5 E14 protons (24 µC)

Linac macro-pulse ~1000 pulses of 670 ns at ~50 mA 
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Strain Measurements
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Harp for transverse profile measurements

Harp

Harp layout

• The harp measures the proton beam’s 
transverse profile

– 3 planes of 30 tungsten wires of 100 µm 

– Always inserted as stage failed

• Needs:

– What alloys are radiation hard: do not use 

Rhenium. Is there a vendor database?

Target
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Up to 150 kW

H0H-

Injection Dump

• Charge exchange Injection region 
change for Proton Power Upgrade

– We need to know where the different 
proton species H- and Ho land on the dump

• H- and Ho as defined as the particle between the 
first and second stripping foil

– To reduce cost and installation time, we like 
to avoid expensive fiber bundles, or long 
optical paths through shielding structures

 Testing a shielded non-radhard camera 
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HiRadMat camera radiation data

Position Time to 

Death* 

(HRS) 
(116 Gy)

MTBF*

(HRS)
Gamma 

dose rate 

(Gy/MWHr)

Neutron 

dose rate 

(Gy/MWHr)

1 285 0.9 0.0738 0.2167

2 339 1.1 0.0784 0.1660

3 2246 7.2 0.0092 0.0277

4 1797 5.8 0.0184 0.0277

5 998 3.2 0.0277 0.0553

6 998 3.2 0.0323 0.0507

7 25674 82.3 0.0028 0.0005

Prediction based on local measured radiation 
without shielding and HiRadMat experiment

• Prediction of Injection Dump camera lifetime using HiRadMat data#:

– Single Event : 1.5 E9 HEH/cm2 (HEH = High Energy Hadrons)

– Time To Death : 4.1-5.6 E11 HEH/cm2 or 116 - 161 Gy

1

2

4 7

3

6

5

This camera 
survives for 
years

Locations of measurements near injection 
dump and in ring straight section

Ring straight section

*At 1.4 MW

#From: S. Burger  “Scintillation Screens and Optical 

Technology for transverse Profile Measurements”, ARIES-

ADA Topical Workshop, Krakow, Poland, April 1 to 3, 2019 
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Camera Testing

Shielded camera in the dark during beam study before neutron production

Bad pixels are 
labeled with red
numbers
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Needs: Cameras

• Radiation resistant 
cameras

– Commercially available 
rad-hard or regular 
cameras

– Effect of radiation types: 
neutron/gamma/proton

• Shielding optimization

Ongoing test of shielded camera in Injection Dump: 
integrated loss during study is only about 1/60 of 
normal production
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Inadvertent study of ZnSe vacuum window at stripper foil

Prompt radiation dose:

• At 1.4 MW, we get 108 mRem/hr or about 107 mRad/hr or about 10 kRad/hr

• We have this window in place for ~9 years or about 36000 MWhr

 36000*104/1.4 = 257 MRad

Window is now green (coating damage?)
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Target Imaging System

Proton Beam 

Window 

Assembly

Fiber Bundle

Turning mirror with triplet lens

Parabolic mirror 

Camera

Target

Specs TIS/Beam

Light Flight Path to 
Imaging Optics (m)

2.1

Imaging Optics Aperture 
Diameter (mm)

25

Geometric (r2) Efficiency 1.77 x 10-3

Imaging Optics NA 
Efficiency

1.35

Reflectivity
• Aluminum Mirrors
• Silica Surfaces

80.91
72.61

Imaging Fiber Transmission
• Packing Fraction
• Attenuation

72.95
92.26

Total Light Collection 

Efficiency
9.46 x 10-6

Number of Protons per 
Pulse at 1.4 MW/1.0 GeV

1.50 x 1014

Number of Photons per 
Pulse at 694 nm‡ 1.42 x 108

Peak Density (ppp/m2) 2.7 x1016

Current Density (A/m2) 0.26

xrms (cm) 5

yrms (cm) 1.75

DPA/year 10.5

Luminescent Coating

Strain from impact
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Alumina coating

• Alumina

– 3.1 g/cm3

– 0.0229 mm

– 97.5 wt% Al2O3

– 2.5   wt% Cr2O3

• Al-Ni substrate

– 8.9  g/cm3

– 0.0051 mm

– 95 wt% Ni

– 5   wt% Al

α-Alumina

Al-Ni substrate

Coating of the target with Al-Ni for bonding
Spraying the cooled target nose without 

overheating to retain alpha phase alumina.
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DPA due to protons (15%) and neutrons (85%)

~0.1 DPA

• Drop of about 93% in 100 MHrs (~ 3 Days)

Decay of luminosity during neutron production

Not an exponential decay, Birks# is a better fit (with offset it fits even better)
#From: P. Forck “Radiation hardness investigations of Al2O3 for MeV/u ions at GSI”, ARIES-ADA 

Topical Workshop, Krakow, Poland, April 1 to 3, 2019 



1212 HiRadMat19

New coatings on the target

Try out different coatings in the corners
• P3 (3% Mix New FJB) and P1 (3% Mix New FJB) are the brightest

• Lost mirror due to water leak in core vessel before full beam on target 
data could be taken no more TIS

Target as coated Interpolated surface plot from uniformity 
scan on fresh target

2000 MWHr test on 

ruby (2011) Initially 

higher, now lower.
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Picture of proton beam window

Corrosion on mirrors and Proton Beam Window

• Eventually there are water leaks into the core vessel

– Radiation mixes with water to create corrosion
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Needs: Target Imaging

• Corrosion test of different mirrors with water vapor and 
radiation

– Planned test at Fermilab 

• Understanding and testing of coating

– Make Al2O3:Cr further radiation resistant

– Test different compositions

– Test different luminescent materials

Luminosity decay

Mirrors with different reflective surfaces and 
protective coatings
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Sensor environment

• Leak detector

– Cannot affect detector  minimize 

introducing new materials

• Interstitial space 
– < 3 mm height

• Electrical noise
– Beam pulse of ~24 µC in 600 ns, 50-100 A 

– Pumps and other equipment

This is where we place the sensors. 

• Proton beam impact

– ~60% of beam energy is deposited as 

heat in the target producing a 

shockwave

 10 - 500 µe on wall

 25 -100 Celsius

• Radiation at sensor locations

– During production: from 1 MRad/MWhr

up to 2.5 GRad/MWhr

Installed sensors
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Fiber Optic Strain Gauges

• Non-conductive and 
insensitive to electrical 
noise

• High directionality 

• SNS prototype:

– High bandwidth (>1 MHz) to 
measure fast pulse response

– Single-mode is radhard

– Noise: <1 µe

– One sensor per fiber

• Sensors are thin (mounted in the ~3mm thick interstitial space 
between shroud and mercury vessel)
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Strain Measurements

• Using strain measurements we can:

– Compare to simulations

– Check for resonances

– Look for static strain build up

– Study the effect of helium gas injection

– Study linearity of strain vs beam power

Slow strain buildup Dependency of strain reduction versus 
beam power and gas flow

Measured strain versus simulation
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Sensor radiation tolerance

• We performed rough evaluations 
of radiation hardness of the fiber 
and the glue
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Sensors

Single-mode Multi-mode

Target 15 total radiation dose per sensor

Target 13 total radiation dose per glue dot

Radiation tolerance GRad

High OH Multi-Mode fiber 3.5

Single-Mode 120

Stycast 2850FT 100

Estimated Radiation tolerance
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Image of the target mercury vessel after its production cycle
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Target Strain Single-Mode Sensor

• At SNS we can only do one test per target 
or ~2x per year and we cannot visually 
inspect the sensors afterwards

• Needs:

– Test radiation hardness of different suitable 
glues (fiber sensor must survive curing process)

– Test the single-mode sensors for failure-modes 
after radiation

• Optical inspections to determine glass weld failure or 
cracks in tube

– Measure effect of radiation flash on glue and 
glass on strain measurement

Curing of epoxy glue

Strain due to proton beam 
energy deposit
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Summary

• At SNS we have high radiation resistant diagnostics but we do 
want to improve these and look for possible collaborations:

– Find the best rad-hard camera for each application

– Testing of materials: tungsten, glues and optical sensors

– Understanding of luminescent coatings radiation damage

• We have a unique high bandwidth strain measurement system 
for use in very high radiation environments

Optical processor modulesStrain waveform


