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Nuclear (and other) Material Studies at BNL
At a glance:

• Intense proton beam effects on target materials and beam windows
• 24 GeV protons at AGS

• Radiation damage effects on particle accelerator materials and systems
• Targets, beam windows and collimators

• Radiation damage effects on reactor materials
• Graphites, Carbon-fiber and SiC/SiC composites, Be, W, Ta, Mo
• Super-alloys (super-Invar, Gum metal, Ti6Al4V)
• Dispersion strengthened Cu (fusion, LHC)
• Nano-precipitated steels
• Nano-structured coatings on reactor steels
• Molten-salt/material interfaces (Inconel, Steels)

• Radiation effects on detectors and exotic systems
• Rare earth magnets (synchrotron undulators)
• CZT crystals
• SiO2 fibers
• Ferrofluids
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Nuclear Materials and Synchrotron Radiation Relationship
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N. Simos, “Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors", Composite Materials, Intech Publishers, ISBN 978-953-307-1098-3, 2011

Advanced Reactor Concepts



Extreme 
Environments 
for Structural 

Materials: 
Fission Reactors 

and Magnetic 
Fusion Systems
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Challenges of Connecting Scales: Materials in Extreme Conditions
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a The unique position of HiRadMat to help advance the field



Synergies with the BNL Accelerator Complex
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Collider Complex

ID 28 (XPD) Beamline

NSLS II Synergy



BLIP Irradiation Capabilities
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Multiple proton energies 66-200 MeV

Good beam current (165µA +) 

Beam rastering

RUN cycle (Dec. – July)

Operates in-tandem with Isotope production and RHIC

(no dedicated beam time needed)

Fully operational hot cell laboratory & infrastructure

Availability of nuclear instruments/technical expertise

Can operate as neutron spallation source

Mode I: Irradiation with BNL Linac protons (up to 200 MeV)

P
o

si
ti

o
n

A

P
o

si
ti

o
n

B

Beam

Mode II: Target endstation as a Neutron Source Fusion spectrum similarities



Tandem van de Graaff Capabilities
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Ions Available at TandemTarget Irradiation Beamline



Irradiation Damage Experiments
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Aim: reach proton fluence levels that approach threshold or operational goal

Target Array in Beam



Nuclear Material Studies at BNL
Radiation damage effects
Linking macrostructure to radiation-induced lattice defects

Focus on:
• Gr, h-BN, Be
• Super-alloys
• Dispersion strengthened Cu (fusion, LHC)
• Nano-precipitated steels
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Beryllium Deformation – Correlating Macroscopic with Lattice Strain
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Graphite Irradiation Damage Studies
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Proton-neutron damage correlation with the help of NSLS-II

N. Simos, et al., “Proton Irradiated Graphite Grades for a Long Baseline Neutrino Facility Experiment,” Ph. Review Accelerators and Beams 20, 071002 2017

Neutron Damage Proton Damage



120 GeV NuMI Target Meets World’s Brightest X-ray 
beam at NSLS-II
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N. Simos, et al., “120 GeV neutrino physics graphite target damage assessment using electron microscopy and high-energy X-ray diffraction,” 

Phys.Rev.Accel.Beams 22, 041001, 2019

Correlation of X-ray and 

electron microscopy 

in IDENTIFYING the state 

of NuMI target at 

FAILURE 

Graphite 

fragmentation 

into nano-

crystallites

6.1 x1020 protons delivered to NT-02 

target resulting in a peak fluence of  

8.6x1021 protons/cm2

Fracture surface



Using the BNL Accelerator Complex to 
Study Super-alloys & Novel Materials 

• The (α + β) Ti-6Al-4V alloy

• Super-Invar

• The β-titanium alloy Gum metal 

(Ti-21Nb-0.7Ta-2.Zr-1.2O)
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Simos et al., Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer, 

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 053001 (2018)



Magnetostriction, Annealing and fcc Phases in Super-Invar
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• CC phases (Ni-rich and Fe-rich) stable following 

irradiation and annealing !!

• X-ray beam, at NSLS II to reveal presence of 2nd

fcc (paramagnetic) phase



Radiation Effects on Microstructure and Phase Stability in Ti-6Al-4V
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Simos et al.

Phase evolution in Ti-6Al-4V  appearance of ω-phase

Tension-compression asymmetry



β-type MULTIFUNCTIONAL alloys Ti-21Nb-2Ta-3Zr-1.2O 
(Gum Metals)

• Gum metals, exhibit extraordinary properties
• Super-elasticity

• Super-plasticity 

• Low elastic modulus

• High strength 

• Debate as to mechanism responsible for its deformation:
• Martensitic transformations ?

or 

• Unconventional localized lattice distortions 
(dislocation-free plastic deformation)  

• Stress & thermally-induced martensite transformations 
and their role in super-elasticity and super-plasticity of the 
multifunctional Ti-21Nb-2Ta-3Zr-1.2O have been explored

• Radiation-induced phase evolution
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Saito et al.

Simos, Camino, et al.



Ti-21Nb-2Ta-3Zr-1.2O: Temperature, Strain and 
Radiation-induced Phase Transitions
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Phase transformation during plastic deformation

Phase evolution following irradiation

Phase transformation  with temperature



Studies of Refractory Metals (W; Ta: Mo)

• Fusion applications
• Spallation target

19
Simos et al., Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope 

producer, PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 053001 (2018)



Observed “anomalies” – W or WO3 ?
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Nuclear Steels: Dispersion Strengthened, Nano-structured Coatings

Precipitates in steel and their kinetics

CRP = copper-rich precipitates (more Cu than other solutes: Mn, Ni, P, Si)
MNP = manganese-nickel-rich precipitates (more Mn-Ni than Cu)
LBPs = late blooming phases (Great Fear)

LBPs: Phases that give rise to sudden an unexpected increase in embrittlement
• long incubation period
• rapid growth thereafter
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Addressing the “Great Fear” in Pressure Vessel Reactor Steels

Precipitates in steel and their kinetics:
Under higher energy particle (fast neutron/proton) is 
“Great Fear” realized much earlier and these phases 
are not late blooming but rather early blooming?
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Nano-structured Fe-based Coatings on Steel

• BNL studies demonstrated the 
remarkable ability of nano-structured 
coatings to remain amorphous under 
intense proton irradiation.
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Oxide-dispersion-strengthened Copper Alloys (GlidCop Al15)

• From LHC applications (collimators) to Fusion 
reactor considerations
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Wrought
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Using BNL accelerator complex to study 
detector materials, etc.

•Rare earth magnets
•CZT crystals
•SiO2 fibers
•Ferrofluidics
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CZT crystals SiO2: LHC 

0-degree calorimeter

Rare-earth magnets Ferrofluidics
Performance Degradation of Ferrofluidic 

Feedthroughs in a Mixed Irradiation Field

FF static torque vs. the inverse of displacement time 

(1/td) following rotational speed cycles up to 5,000 rpm



Summary
• The novel materials, alloys and 

composites required for next generation 
reactors and accelerator applications 
require evaluation under extreme 
conditions
• The suite of tools available with the BNL 

accelerator complex enable such 
assessments

• Predicting material lifetimes in likely future 
environments remains a formidable 
challenge
• Detailed studies of the structural evolution of 

materials under a range of conditions can 
substantially improve our ability to anticipate 
material performance

• The availability of fast neutron sources 
with high fluence for materials tests is 
very limited
• Our knowledge of how materials evolve and 

damage under thermal neutrons cannot be 
extrapolated to their response to fast 
neutrons for fast reactors

• Using protons or heavy ions as surrogates 
to emulate the damaging effects of fast 
neutrons is an ongoing debate and research

• BNL’s combination of irradiation and x-ray 
characterization tools provides a powerful 
route to studying relationship between proton 
and fast neutron damage through detailed 
study of the evolution of materials at the 
microstructural level
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The BNL Team looks forward to continued collaboration 
with the HiRadMat effort to provide the next-generation 
materials our future facilities require

Thank you for your attention!
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