

Displacement cross section measurements at HiRadMat

(JAEA/J-PARC) Shin-ichiro. Meigo,

- H. Matsuda, Y. Iwamoto,
- S. Hasegawa, F. Maekawa,
- H. Iwamoto

(KEK/J-PARC) M. Yoshida, T. Nakamoto, T. Ishida,

and S. Makimura

 Present study includes the results of "Measurement of displacement cross section at J-PARC for structural material utilized at ADS" entrusted to JAEA by MEXT

Contents

Introduction

- Present and future plan of J-PARC
- Displacement cross section experiment at J-PARC
- Experiment at HiRadMat
- Summary

Hadron Experiment Facility

> 30GeV Synchrotron MR (0.75MW)

Line (S)

Materials & Life Science Facility (MLF)

Bird's eye photo

3GeV Synchrotron RCS (25Hz,1MW)

Transmutation Facility (TEF) (Phase II)

JFY2007 Beam

JFY2008 Beam

JFY2009 Beam

Linac 400MeV(50mA)

10 V V

Neutrino Exp. Facility (294km to Super KAMIOKANDE)

JRR-3M 800m to MLF

J-PARC = Japan Proton Accelerator Research Complex

Targets in Material Life Experimental Facility (MLF)

- Muon production target
 - Carbon graphite
 - Highest μ^{-} intensity
- Thick. 2cm Diam. Ø33cm
- Neutron production target
 - Mercury (Hg)

W 34cm

Highest pulse intensity in the world

Ptron

Target for high-intensity hadron accelerator and superconductor in high radiation area

Proton beam window in J-PARC spallation neutron source: Aluminum alloy (ϕ 0.6 m) T2K beam window Titanium alloy (Ti-6AI-4V)

For damage
estimation of beam
intercepting material,
DPA is utilized based
on displacement
cross section.

⊕

 High accuracy of the displacement crosssection is required.

 Resistivity change due to radiation is crucial for Superconductor(SC) magnet sustaining damage.

ADS Proposed by JAEA - LBE Target/Cooled Concept -

ビームダクト 燃料出入機 回転プラグ ビームダク ビーム窓冷却 流路案内管 Beam window 陽子ビーム入射構造

• Beam window: 20 dpa/year. Accuracy of dpa is required for damage estimation.

Transmutation Experimental Facility (TEF)

For R&D of ADS, 0.4 GeV beam by LINAC will be delivered to TEF.

Beam transport from RCS to MLF

Proton Beam Window at MLF (A5083)

- Lifetime estimation based on Post Irradiation Examination (PIE) for safety shroud (AIMg3) at SINQ in PSI
- Considering difference of proton energy, to predict lifetime of the PBW with high accuracy for validation of calculation

Result at SINQ/PSI for 0.6GeV

Lifetime of PBW: Determined by He gas production (1200 appm) 2 years^{*} By recent PIE result of the SINQ (2400 apmm), lifetime may be applicable to 3 years.

1 MW beam operation at MLF

Last year memorial snap shot at 1MW for 1 h test (2018/7/3)

Result of this year Beam intensity trend at 1MW for 10.5 h test (2019/7/3) Availability ~ 99%

PKA and DPA

• DPA (Displacement per Atom) is estimated by calculation based on PKA.

DPA and displacement cross section

- Although DPA is widely utilized for estimation of damage, displacement cross section has not been enough validated.
 - DPA = flux x Displacement cross section
 - Displacement cross section has been measured only Cu and W for a few energies of protons less than 3 GeV
 - Among calculations models, showing large discrepancies

N. Mokhov HPTW2016

Measurement of DPA cross section at Kyoto univ.

- Irradiation on metal at cryogenic temperature with GM cryocooler
- By observing increase of electrical resistance, the cross section can be observed.

Measurement for Cu already performed at Kyoto university for 125 MeV proton

Irradiation chamber with GM cryocooler

Experiment at J-PARC

- Samples and GM placed at exit of 3-GeV synchrotron for various energy of proton 0.4 to 3 GeV
- Other experiment performed at other sites for energy < 400 MeV

Experimental condition

Resist. and Temp. during beam irrad. Recovering Resist. by annealing 32.0 100 Thermal recovery of the radiation-induced 125 MeV proton, 125 MeV proton on copper 31.5 this work esistivity increase $\Delta \rho / \Delta \rho_0$ (%) Electrical resistance of copper ($\mu\Omega$) 0.54 MeV proton, 8 80 Resistance of copper empeatu 31.0 Iwata et al. 1.3 MeV electron, Corbett et al. 30.5 16 60 30.0 1 nA coppe 4 40 29.5 beam on beam on beam on 29.0 12 조 20 Copper 28.5 Temperature of copper 10 28.0 0 16.5 66 33 49.5 0 100 10 Elapsed time (hour) Annealing temperature (K)

1 nA x 12h = $3x10^{14}$ protons Several shots of beam at MLF

Y. Iwamoto et al.

Temp rising ~20 K will be acceptable. Lower beam intensity with accurate beam shape is preferable. $(1x10^{10} - 2x10^{13} \text{ protons/shot})$

Measurement of cross section for 0.4~3 GeV proton

Experiment at the RCS with change of radiation license 0

40 mm

With changing extraction timing of RCS, kinetic energy of proton can vary from 0.4 0 to 3 GeV.

Cold head and sample

Under cryotemperature (~ 20 K), displacement cross section(σ) was obtained by increase of resistivity ($\Delta \rho_{cu}$) due to proton irradiation with average flux $\overline{(\phi(E))}$

$$\sigma_{exp}(E) = \Delta \rho_{Cu}/(\overline{\phi(E)}\rho_{FP}),$$

 ρ_{FP} : Resistivity change by a Frankel pair (2.2x10⁻⁶ Ω m)

Experimental result

 $\sigma_{exp}(E) = \Delta \rho_{Cu} / (\overline{\phi(E)} \rho_{FP}),$

- Experiment was carried out for protons with 0.8, 1.3, 2.2 and 3.0 GeV
- To obtain resistance with high accuracy, 4 wire with delta mode with averaging was applied.
- Beam width on the sample was obtained with the beam profile monitor.
- Error is dominated with resistivity change by creation of the Frankel pair (23%).

Cascade sample holder

RCNP (Osaka univ.) experiment by Iwamoto

- To obtain Cu and Al data, cascade scheme applied.
- Achieved ~5 K

Experiment at 3NBT in J-PARC

- Cascade target of 4 pieces (AI, Fe, Cu, W) applied
- Temp ~19 K
- In future improved to achieve ~5K

Calculation with PHITS code

- Displacement cross section with PHITS implemented following models
 - Norgett-Robinson-Torrens (NRT) model
 - Athermal recombination corrected (arc) model (Nordlund model)
 - Nature comm. 9, 1084, 2018

NRT (Cu Ed 33 eV): $T_d < E_d$ $\frac{1}{\frac{0.8T_{d}}{2E_{d}}}, \frac{E_{d}}{\frac{2E_{d}}{0.8}} < T_{d} < \infty$ $N_{\rm d}(T_{\rm d}) =$ N_d: Number of displacement T_d: Displ. energy 0 ps 0.1 ps 0.8 ps 0.0562 1023.756.213331675017804220-3 ps 10 ps 50 ps

Nordlund (Cu Ed 33 eV):

$$N_{d,arcdpa}(T_{d}) = \begin{bmatrix} 0 & , & T_{d} < E_{d} \\ 1 & , & E_{d} < T_{d} < \frac{2E_{d}}{0.8} \\ \frac{0.8T_{d}}{2E_{d}} \xi_{arcdpa}(T_{d}) & , & \frac{2E_{d}}{0.8} < T_{d} < \infty \end{bmatrix}$$
$$\xi_{arcdpa}(T_{d}) = \frac{1 - c_{arcdpa}}{(2E_{d}/0.8)^{b_{arcdpa}}} T_{d}^{b_{arcdpa}} + c_{arcdpa}$$

Comparison with models calculation

Comparison with MARS

Displacement cross section for AI and W

10

Displacement cross section above 30 GeV

As increase proton kinematic energy, heat density on material (W) increase Regardless of the kinematic energy for Ep>30 GeV, displacement crosssection sustains almost constant

To solve the curious puzzle, the experiment should be carried out for high energy region.

Disp. cross-section experiment at HiRadMat

- Relatively easy experiment
- Equipment
 - GM cryo-cooler
 - Vacuum chamber
 - Those had be utilized at previous exeptiment at HiRad
 - Instruments to observe sample resistance
- Instruments can be placed at near the sample with low radiation (TT61)
- Requirement of experiment
 - Beam monitor and properties
 - Beam scan procedure
- Almost instruments are prepared. All we need is sample, sample holder and budget of travel.

Experiment at FNAL

- Budget already approved by MEXT for some of our collaborators
- On 2021, the experiment will start for 120 GeV proton.

Summary

- Displacement cross section, measurement for 0.4~30 GeV protons has conducted in J-PARC.
- At FNAL, displacement cross section experiment for 120 GeV will be carried out.
- To obtain the displacement cross section at 400 GeV, which is important for HL-LHC, the experiment should be performed at HiRadMat.

Contribution for displacement

J-P/IRG

HiRadMat at a Glance

- Originated from the LHC Collimation Project, due to requirements for a facility capable for "testing accelerator equipment with beam shock impacts¹ using high power LHC type beams²".
- The High Radiation to Materials (HiRadMat) testing facility took its first beam in 2012 and has continued to deliver pulsed, high intensity, LHCtype beam to over 40 experiments.

SextSc investigated damage limits of superconducting magnets, via use of cryostat to reach temperatures ~4K.

BLM2 studied the signal linearity and response, calibration, saturation and comparison of different types of Beam Loss Monitors

ATLAS investigated radiation hardness and damage threshold of pixel tracker detectors.

¹ <u>http://lhc-collimation-project.web.cern.ch/lhc-collimation-project/HiRadMat.htm</u> ² R. Assmann et al., "User Requirements for a Test Facility with High Power LHC Type Beam", 2009, EDMS No: 1130296

20-Dec-18

5th RaDIATE Collaboration Meeting

F. Harden

Irradiation Area

<u>TT61</u>

HiRadMat has dedicated feedthroughs into an adjacent tunnel (TT61) where additional electronic and measurement systems can be added. Progress has been made to shield this area from radiation effects.

> 3D model of feed-through between HiRadMat Experimental Area and Electronics Area.

5th RaDIATE Collaboration Meeting

F. Harden

